Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States.
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
J Med Internet Res. 2024 Sep 30;26:e55164. doi: 10.2196/55164.
Family health history (FHx) is an important predictor of a person's genetic risk but is not collected by many adults in the United States.
This study aims to test and compare the usability, engagement, and report usefulness of 2 web-based methods to collect FHx.
This mixed methods study compared FHx data collection using a flow-based chatbot (KIT; the curious interactive test) and a form-based method. KIT's design was optimized to reduce user burden. We recruited and randomized individuals from 2 crowdsourced platforms to 1 of the 2 FHx methods. All participants were asked to complete a questionnaire to assess the method's usability, the usefulness of a report summarizing their experience, user-desired chatbot enhancements, and general user experience. Engagement was studied using log data collected by the methods. We used qualitative findings from analyzing free-text comments to supplement the primary quantitative results.
Participants randomized to KIT reported higher usability than those randomized to the form, with a mean System Usability Scale score of 80.2 versus 61.9 (P<.001), respectively. The engagement analysis reflected design differences in the onboarding process. KIT users spent less time entering FHx information and reported more conditions than form users (mean 5.90 vs 7.97 min; P=.04; and mean 7.8 vs 10.1 conditions; P=.04). Both KIT and form users somewhat agreed that the report was useful (Likert scale ratings of 4.08 and 4.29, respectively). Among desired enhancements, personalization was the highest-rated feature (188/205, 91.7% rated medium- to high-priority). Qualitative analyses revealed positive and negative characteristics of both KIT and the form-based method. Among respondents randomized to KIT, most indicated it was easy to use and navigate and that they could respond to and understand user prompts. Negative comments addressed KIT's personality, conversational pace, and ability to manage errors. For KIT and form respondents, qualitative results revealed common themes, including a desire for more information about conditions and a mutual appreciation for the multiple-choice button response format. Respondents also said they wanted to report health information beyond KIT's prompts (eg, personal health history) and for KIT to provide more personalized responses.
We showed that KIT provided a usable way to collect FHx. We also identified design considerations to improve chatbot-based FHx data collection: First, the final report summarizing the FHx collection experience should be enhanced to provide more value for patients. Second, the onboarding chatbot prompt may impact data quality and should be carefully considered. Finally, we highlighted several areas that could be improved by moving from a flow-based chatbot to a large language model implementation strategy.
家族健康史(FHx)是一个人遗传风险的重要预测指标,但在美国有许多成年人并未采集该信息。
本研究旨在测试和比较 2 种基于网络的 FHx 采集方法的可用性、参与度和报告有用性。
本混合方法研究比较了使用基于流程的聊天机器人(KIT;好奇的互动测试)和基于表单的方法采集 FHx 数据。KIT 的设计经过优化,以减轻用户负担。我们从 2 个众包平台招募并随机分配参与者至 2 种 FHx 方法中的 1 种。所有参与者均被要求完成一份调查问卷,以评估方法的可用性、总结其体验的报告的有用性、用户期望的聊天机器人增强功能以及一般用户体验。使用方法收集的日志数据研究参与度。我们使用从分析自由文本评论中得出的定性发现来补充主要的定量结果。
随机分配至 KIT 的参与者报告的可用性高于随机分配至表单的参与者,系统可用性量表评分分别为 80.2 分和 61.9 分(P<.001)。参与度分析反映了入职流程的设计差异。KIT 用户输入 FHx 信息的时间更短,报告的疾病数量多于表单用户(平均 5.90 分钟对 7.97 分钟;P=.04;平均 7.8 个对 10.1 个疾病;P=.04)。KIT 和表单用户均对报告的有用性表示一定程度的认同(李克特量表评分分别为 4.08 分和 4.29 分)。在期望的增强功能中,个性化是评分最高的功能(188/205,91.7%的人认为中等至高度优先)。定性分析揭示了 KIT 和基于表单的方法的优缺点。在随机分配至 KIT 的受访者中,大多数人表示它易于使用和导航,并且他们可以响应和理解用户提示。负面评价涉及 KIT 的个性、对话速度和错误管理能力。对于 KIT 和表单的受访者,定性结果揭示了共同的主题,包括希望了解更多关于疾病的信息,以及对多选按钮响应格式的相互赞赏。受访者还表示,他们希望报告 KIT 提示以外的健康信息(例如个人健康史),并希望 KIT 提供更个性化的响应。
我们表明 KIT 提供了一种可用的 FHx 采集方法。我们还确定了改进基于聊天机器人的 FHx 数据采集的设计注意事项:首先,应增强总结 FHx 采集体验的最终报告,以提高患者的价值。其次,入职聊天机器人提示可能会影响数据质量,应谨慎考虑。最后,我们强调了通过从基于流程的聊天机器人迁移到大型语言模型实施策略可以改进的几个领域。