Kom Betzer Inbal, Ronen Roi, Holodovsky Vadim, Schechner Yoav Y, Koren Ilan
IEEE Trans Pattern Anal Mach Intell. 2024 Sep 30;PP. doi: 10.1109/TPAMI.2024.3467913.
Inverse problems in scientific imaging often seek physical characterization of heterogeneous scene materials. The scene is thus represented by physical quantities, such as the density and sizes of particles (microphysics) across a domain. Moreover, the forward image formation model is physical. An important case is that of clouds, where microphysics in three dimensions (3D) dictate the cloud dynamics, lifetime and albedo, with implications to Earth's energy balance, sustainable energy and rainfall. Current methods, however, recover very degenerate representations of microphysics. To enable 3D volumetric recovery of all the required microphysical parameters, we introduce the neural microphysics field (NeMF). It is based on a deep neural network, whose input is multi-view polarization images. NeMF is pre-trained through supervised learning. Training relies on polarized radiative transfer, and noise modeling in polarization-sensitive sensors. The results offer unprecedented recovery, including droplet effective variance. We test NeMF in rigorous simulations and demonstrate it using real-world polarization-image data.
科学成像中的逆问题通常旨在对异质场景材料进行物理表征。因此,场景由物理量表示,例如跨域的粒子密度和尺寸(微观物理学)。此外,前向图像形成模型是物理的。一个重要的例子是云,其中三维(3D)微观物理学决定了云的动力学、寿命和反照率,对地球的能量平衡、可持续能源和降雨都有影响。然而,目前的方法只能恢复非常退化的微观物理学表示。为了实现对所有所需微观物理参数的3D体积恢复,我们引入了神经微观物理场(NeMF)。它基于一个深度神经网络,其输入是多视图偏振图像。NeMF通过监督学习进行预训练。训练依赖于偏振辐射传输以及偏振敏感传感器中的噪声建模。结果提供了前所未有的恢复效果,包括液滴有效方差。我们在严格的模拟中测试了NeMF,并使用真实世界的偏振图像数据进行了演示。