Melchakova Iu A, Oyeniyi G T, Engelgardt D R, Polyutov S P, Avramov P V
ITMO University, Kronverksky Prospect 49, Bldg. A, Perogradsky District, Saint Petersburg 197101, Russia.
Department of Chemistry, College of Natural Science, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
J Phys Chem A. 2024 Oct 10;128(40):8591-8614. doi: 10.1021/acs.jpca.4c02792. Epub 2024 Sep 30.
This Review provides the first comprehensive overview of the structure and properties of exotic -crystalline aperiodic cyclic multiply twinned nano- (10-100 ) and meso- (up to 1 ) diamond particles (MTPs) exhibiting pentagonal symmetry. It spans their independent experimental discoveries (1963, 1964, 1972, and 1983) and theoretical structural insights (1993) to recent advancements. The Review focuses on high-symmetry MTPs formed by the fusion of multiple cubic diamond fragments through [111] facets. The diamond lattice of individual fragments offers a vast range of MTP varieties. These particles are shown to be a special case of aperiodic crystalline solids with limited dimensions and rotational symmetry, leading to a breakdown of translational invariance. Detailed mathematical analysis of the MTPs' lattices highlights the crucial role of central cores in determining the symmetry and effective dimensions of these structures. Both structural and kinetic aspects of the formation mechanisms of pentagonal diamond particles are considered, revealing the main role of embryo seeds (low fullerenes, polyhexacyclo[5.5.1.1.1.0.0]pentadecane (C), and polyheptacyclo[5.5.1.1.1.0.0]octadecane (C)) in determining the MTPs' symmetry and structure. The effective dimensions of multiply twinned diamonds are shown to be limited by structural stress caused by the mismatch of perfect pentagonal and tetrahedral dihedral angles. The extraordinary mechanical and electronic properties of multiply twinned diamonds are discussed, highlighting that hexagonal interfaces between cubic diamond fragments may determine exceptional ultrahard and quantum characteristics. The MTP X-ray diffraction spectra reveal clear pentagonal patterns with single (diamond decahedrons or dodecahedrons) or ten (diamond icosahedra) central 5-fold axes. A comparative analysis of experimental structural data and simulations at different theoretical levels demonstrates a perfect correspondence of theoretical models with crystalline lattices.
本综述首次全面概述了具有五重对称性的奇异晶体非周期性环状多重孪晶纳米级(10 - 100 )和介观级(最大至1 )金刚石颗粒(MTPs)的结构与性质。它涵盖了这些颗粒从独立的实验发现(1963年、1964年、1972年和1983年)以及理论结构见解(1993年)到近期进展的内容。该综述聚焦于通过[111]晶面融合多个立方金刚石片段形成的高对称性MTPs。单个片段的金刚石晶格提供了种类繁多的MTPs。这些颗粒被证明是具有有限尺寸和旋转对称性的非周期性晶体固体的特殊情况,导致平移不变性的破坏。对MTPs晶格的详细数学分析突出了中心核在确定这些结构的对称性和有效尺寸方面的关键作用。同时考虑了五边形金刚石颗粒形成机制的结构和动力学方面,揭示了胚胎种子(低富勒烯、多六环[5.5.1.1.1.0.0]十五烷(C)和多七环[5.5.1.1.1.0.0]十八烷(C))在决定MTPs对称性和结构方面的主要作用。多重孪晶金刚石的有效尺寸被证明受到完美五边形和四面体二面角不匹配所引起的结构应力的限制。讨论了多重孪晶金刚石非凡的力学和电子性质,强调立方金刚石片段之间的六边形界面可能决定其卓越的超硬和量子特性。MTPs的X射线衍射光谱显示出清晰的五边形图案,具有单个(金刚石十面体或十二面体)或十个(金刚石二十面体)中心五重轴。在不同理论水平下对实验结构数据和模拟的比较分析表明理论模型与晶体晶格完美对应。