School of Computing Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Wuhan Vocational College of Software and Engineering (Wuhan Open University), Wuhan, Hubei, China.
PLoS One. 2024 Sep 30;19(9):e0311305. doi: 10.1371/journal.pone.0311305. eCollection 2024.
Multi-Label Text Classification (MLTC) is a crucial task in natural language processing. Compared to single-label text classification, MLTC is more challenging due to its vast collection of labels which include extracting local semantic information, learning label correlations, and solving label data imbalance problems. This paper proposes a model of Label Attention and Correlation Networks (LACN) to address the challenges of classifying multi-label text and enhance classification performance. The proposed model employs the label attention mechanism for a more discriminative text representation and uses the correlation network based on label distribution to enhance the classification results. Also, a weight factor based on the number of samples and a modulation function based on prediction probability are combined to alleviate the label data imbalance effectively. Extensive experiments are conducted on the widely-used conventional datasets AAPD and RCV1-v2, and extreme datasets EUR-LEX and AmazonCat-13K. The results indicate that the proposed model can be used to deal with extreme multi-label data and achieve optimal or suboptimal results versus state-of-the-art methods. For the AAPD dataset, compared with the suboptimal method, it outperforms the second-best method by 2.05% ∼ 5.07% in precision@k and by 2.10% ∼ 3.24% in NDCG@k for k = 1, 3, 5. The superior outcomes demonstrate the effectiveness of LACN and its competitiveness in dealing with MLTC tasks.
多标签文本分类 (MLTC) 是自然语言处理中的一项重要任务。与单标签文本分类相比,MLTC 更具挑战性,因为它有大量的标签,包括提取局部语义信息、学习标签相关性以及解决标签数据不平衡问题。本文提出了一种标签注意力和关联网络 (LACN) 模型,以解决多标签文本分类的挑战并提高分类性能。所提出的模型采用标签注意力机制对文本进行更具判别性的表示,并使用基于标签分布的关联网络来增强分类结果。此外,还结合了基于样本数量的权重因子和基于预测概率的调制函数,以有效缓解标签数据的不平衡问题。在广泛使用的常规数据集 AAPD 和 RCV1-v2 以及极端数据集 EUR-LEX 和 AmazonCat-13K 上进行了大量实验。结果表明,所提出的模型可以用于处理极端多标签数据,并在精度@k 和 NDCG@k 方面实现了最优或次优的结果,优于最先进的方法。对于 AAPD 数据集,与次优方法相比,在 k = 1、3、5 时,LACN 在精度@k 和 NDCG@k 方面的最优方法分别比第二好的方法高出 2.05%∼5.07%和 2.10%∼3.24%。优越的结果证明了 LACN 的有效性及其在处理 MLTC 任务方面的竞争力。