Patel Aditi Khatri, Trageser Kyle, Kim Hyunjin, Lim Weikeat, Adler Christina, Porter Brace, Ni Min, Wei Yi, Atwal Gurinder S, Bigdelou Parnian, Kulshreshtha Vikas, Ajithdoss Dharani, Zhong Jun, Tu Naxin, Macdonald Lynn, Murphy Andrew, Frleta Davor
Regeneron Pharmaceuticals, Inc, Tarrytown, NY.
Blood Adv. 2024 Dec 10;8(23):5975-5987. doi: 10.1182/bloodadvances.2023011754.
A challenge for human immune system (HIS) mouse models has been the lack of human red blood cell (hRBC) survival after engraftment of these immune-deficient mice with human CD34+ hematopoietic stem cells (HSCs). This limits the use of HIS models for preclinical testing of targets directed at hRBC-related diseases. Although human white blood cells can develop in the peripheral blood of mice engrafted with human HSCs, peripheral hRBCs are quickly phagocytosed by murine macrophages upon egress from the bone marrow. Genetic ablation of murine myeloid cells results in severe pathology in resulting mice, rendering such an approach to increase hRBC survival in HIS mice impractical. Heme oxygenase-1 (HMOX-1)-deficient mice have reduced macrophages due to toxic buildup of intracellular heme upon engulfment of RBCs, but do not have an overall loss of myeloid cells. We took advantage of this observation and generated HMOX-1-/- mice on a humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- background. These mice have reduced murine macrophages but comparable levels of murine myeloid cells to HMOX-1+/+ control mice in the same background. Injected hRBCs survive longer in HMOX-1-/- mice than in HMOX-1+/+ controls. Additionally, upon human HSC engraftment, hRBCs can be observed in the peripheral blood of HMOX-1-/- humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- mice, and hRBC levels can be increased by treatment with human erythropoietin. Given that hRBC are present in the peripheral blood of engrafted HMOX-1-/- mice, these mice have the potential to be used for hematologic disease modeling, and for testing therapeutic treatments for hRBC diseases in vivo.
人类免疫系统(HIS)小鼠模型面临的一个挑战是,在用人类CD34+造血干细胞(HSC)移植这些免疫缺陷小鼠后,缺乏人类红细胞(hRBC)的存活。这限制了HIS模型在针对hRBC相关疾病的靶点临床前测试中的应用。虽然人类白细胞可以在移植了人类HSC的小鼠外周血中发育,但外周hRBC从骨髓逸出后会迅速被小鼠巨噬细胞吞噬。对小鼠髓系细胞进行基因消融会导致所得小鼠出现严重病理状况,使得这种增加HIS小鼠中hRBC存活的方法不切实际。血红素加氧酶-1(HMOX-1)缺陷小鼠由于吞噬红细胞后细胞内血红素的毒性积累而巨噬细胞减少,但髓系细胞并没有整体缺失。我们利用这一观察结果,在人源化的M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/-背景上培育出了HMOX-1-/-小鼠。与相同背景下的HMOX-1+/+对照小鼠相比,这些小鼠的小鼠巨噬细胞减少,但小鼠髓系细胞水平相当。注射的hRBC在HMOX-1-/-小鼠中的存活时间比在HMOX-1+/+对照小鼠中更长。此外,在移植人类HSC后,可以在HMOX-1-/-人源化M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/-小鼠的外周血中观察到hRBC,并且通过用人促红细胞生成素治疗可以提高hRBC水平。鉴于在移植的HMOX-1-/-小鼠的外周血中存在hRBC,这些小鼠有潜力用于血液疾病建模以及体内hRBC疾病治疗方法的测试。