Energy Research Centre, Panjab University, Chandigarh, India.
Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria.
Int J Biol Macromol. 2024 Nov;280(Pt 4):136136. doi: 10.1016/j.ijbiomac.2024.136136. Epub 2024 Sep 28.
Pristine microporous organic polymer (p-MOP), owing to the presence of heteroatoms, has emerged as a significant platform for sensing and adsorption of heavy metal ions. The present work is a novel approach for developing highly porous hybrid architectures with trimesic acid and phenylene diamine-based p-MOP embedded over rice straw-derived cellulose nanofibers (ACNFs/MOP) for the sensing and remediation of mercury ions in the aqueous medium. The ACNFs/MOP were successfully characterized by various techniques, such as FTIR spectroscopy, BET surface area analysis, X-ray diffraction, XPS, HR-TEM, and TGA. The hybrid exhibited excellent porosity and crystallinity. The ACNFs/MOP hybrid was highly selective for Hg(II) ions, displaying substantial enhancement in fluorescence intensity with an LOD of 3.927 nM while also facilitating simultaneous adsorption. The adsorption showed a strong fit with pseudo-second-order kinetics and Langmuir isotherm models with an excellent adsorption capacity of 416.18 mg g, attributed to electrostatic interactions, coordination surface complexation, and metal-π interactions, as confirmed by XPS studies. Thermodynamic studies indicated an endothermic adsorption process. Box-Behnken Design-Response Surface methodology with Design Expert Software-13 was applied to model the process parameters. The hybrids were 97 % efficient even after five cycles of reusability, exhibiting their excellent potential for removing perilous Hg(II) ions from wastewater.
原始的微孔有机聚合物 (p-MOP) 由于存在杂原子,已成为用于感测和吸附重金属离子的重要平台。本工作提出了一种新颖的方法,用于开发具有均苯三甲酸和苯二胺基 p-MOP 嵌入在稻秆衍生的纤维素纳米纤维 (ACNFs/MOP) 上的高多孔混合结构,用于在水介质中感测和修复汞离子。通过各种技术成功地对 ACNFs/MOP 进行了表征,例如傅里叶变换红外光谱、BET 表面积分析、X 射线衍射、X 射线光电子能谱、高分辨率透射电子显微镜和热重分析。该混合材料具有优异的孔隙率和结晶度。ACNFs/MOP 混合材料对 Hg(II) 离子具有高度选择性,荧光强度显著增强,LOD 为 3.927 nM,同时还促进了同时吸附。吸附与准二级动力学和 Langmuir 等温线模型具有很强的拟合度,吸附容量为 416.18 mg g,这归因于静电相互作用、配位表面络合和金属-π 相互作用,这一点通过 XPS 研究得到了证实。热力学研究表明这是一个吸热吸附过程。使用 Design Expert Software-13 的 Box-Behnken 设计-响应面方法对工艺参数进行建模。即使在经过五次循环的可重复使用后,该混合材料的效率仍达到 97%,表明其具有从废水中去除危险 Hg(II)离子的巨大潜力。