Department of Botany, Charles University, Benátská 2, 128 01 Prague, Czech Republic; Department of Paleoecology, Institute of Botany of the Czech Academy of Sciences, Lidická 25/27, 602 00 Brno, Czech Republic.
Geography Research Unit, University of Oulu, Pentti Kaiterankatu 1, 90570 Oulu, Finland.
Sci Total Environ. 2024 Dec 1;954:176613. doi: 10.1016/j.scitotenv.2024.176613. Epub 2024 Sep 28.
Quantitative paleoecological reconstructions using biological proxies, such as diatoms, Cladocera, and chironomids, have revolutionized paleolimnology and have greatly contributed to the understanding of the past local and regional environmental changes, as well as to nature conservation. While macrophytes are good ecological indicators, they have rarely been used to reconstruct past lake-water chemistry. The present study investigates which environmental variable best explains aquatic plant community composition in Finnish, Polish, and Swedish lakes for its further use in quantitative paleoenvironmental reconstructions. The method involved the creation of a modern macrophyte-environment calibration dataset, calculation of modern calibration functions using simple averaging regression, and final reconstruction of past environmental conditions in Lake Linówek (NE Poland) from a fossil assemblage using weighted averaging calibration. The data demonstrate that conductivity and alkalinity best explained macrophyte community composition in our dataset. Species "optima" for alkalinity were influenced by the presence/absence of carbon concentrating mechanisms (CCMs), enabling the utilization of HCO as a carbon source. Quantitative paleoenvironmental reconstruction indicates that past water conductivity and alkalinity fluctuated depending on internal lake processes and the supply of basic ions to the lake from the catchment related to climate and soil development in the watershed during the late Glacial (∼14,500-11,700 calibrated years before the present; cal BP) and the Holocene (11,700 cal BP-recent). We conclude that macrophytes can be successfully used for past lake-water chemistry reconstruction. Furthermore, calculated modern calibration functions for conductivity and alkalinity can be used in nature conservation for determining habitat requirements of numerous endangered macrophyte species as a basis for successful (re)introductions.
利用生物指标(如硅藻、枝角类和摇蚊)进行定量古生态重建,彻底改变了古湖沼学,并极大地促进了对过去局部和区域环境变化的了解,以及对自然保护的了解。虽然大型植物是很好的生态指标,但它们很少被用于重建过去的湖水化学性质。本研究探讨了哪些环境变量最能解释芬兰、波兰和瑞典湖泊的水生植物群落组成,以便进一步用于定量古环境重建。该方法涉及创建一个现代大型植物-环境校准数据集,使用简单平均回归计算现代校准函数,以及使用加权平均校准从化石组合重建波兰东北部 Linówek 湖过去的环境条件。数据表明,电导率和碱度是解释我们数据集大型植物群落组成的最佳因素。碱度的“最佳物种”受碳浓缩机制 (CCM) 的存在/不存在的影响,从而使 HCO 能够作为碳源被利用。定量古环境重建表明,过去的水导电性和碱度波动取决于内部湖泊过程以及与流域气候和土壤发育相关的基本离子向湖泊的供应,这种波动发生在末次冰期(距今约 14500-11700 年;校准前)和全新世(11700 年校准前至今)期间。我们得出的结论是,大型植物可以成功地用于过去的湖水化学重建。此外,计算出的电导率和碱度现代校准函数可用于自然保护,以确定许多濒危大型植物物种的栖息地需求,作为成功(再)引入的基础。