Suppr超能文献

基于多尺度特征融合与增强的葡萄串检测

Grape clusters detection based on multi-scale feature fusion and augmentation.

作者信息

Ma Jinlin, Xu Silong, Ma Ziping, Fu Hong, Lin Baobao

机构信息

School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China.

Key Laboratory of Images and Graphics Intelligent Processing of National Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.

出版信息

Sci Rep. 2024 Sep 30;14(1):22701. doi: 10.1038/s41598-024-72727-y.

Abstract

This paper addresses the challenge of low detection accuracy of grape clusters caused by scale differences, illumination changes, and occlusion in realistic and complex scenes. We propose a multi-scale feature fusion and augmentation YOLOv7 network to enhance the detection accuracy of grape clusters across variable environments. First, we design a Multi-Scale Feature Extraction Module (MSFEM) to enhance feature extraction for small-scale targets. Second, we propose the Receptive Field Augmentation Module (RFAM), which uses dilated convolution to expand the receptive field and enhance the detection accuracy for objects of various scales. Third, we present the Spatial Pyramid Pooling Cross Stage Partial Concatenation Faster (SPPCSPCF) module to fuse multi-scale features, improving accuracy and speeding up model training. Finally, we integrate the Residual Global Attention Mechanism (ResGAM) into the network to better focus on crucial regions and features. Experimental results show that our proposed method achieves a mAP of 93.29% on the GrappoliV2 dataset, an improvement of 5.39% over YOLOv7. Additionally, our method increases Precision, Recall, and F1 score by 2.83%, 3.49%, and 0.07, respectively. Compared to state-of-the-art detection methods, our approach demonstrates superior detection performance and adaptability to various environments for detecting grape clusters.

摘要

本文针对现实复杂场景中因尺度差异、光照变化和遮挡导致葡萄串检测准确率低的挑战。我们提出了一种多尺度特征融合与增强的YOLOv7网络,以提高在不同环境下葡萄串的检测准确率。首先,我们设计了一个多尺度特征提取模块(MSFEM)来增强对小尺度目标的特征提取。其次,我们提出了感受野增强模块(RFAM),它使用空洞卷积来扩大感受野,提高对各种尺度物体的检测准确率。第三,我们提出了空间金字塔池化跨阶段部分拼接更快(SPPCSPCF)模块来融合多尺度特征,提高准确率并加速模型训练。最后,我们将残差全局注意力机制(ResGAM)集成到网络中,以更好地聚焦关键区域和特征。实验结果表明,我们提出的方法在GrappoliV2数据集上的平均精度均值(mAP)达到了93.29%,比YOLOv7提高了5.39%。此外,我们的方法的精确率、召回率和F1分数分别提高了2.83%、3.49%和0.07。与当前最先进的检测方法相比,我们的方法在检测葡萄串时表现出卓越的检测性能和对各种环境的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e67/11443102/ab3266626b5e/41598_2024_72727_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验