Suppr超能文献

一种理解早期自闭症异质性的三维方法。

A 3D approach to understanding heterogeneity in early developing autisms.

机构信息

Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.

Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.

出版信息

Mol Autism. 2024 Sep 30;15(1):41. doi: 10.1186/s13229-024-00613-5.

Abstract

BACKGROUND

Phenotypic heterogeneity in early language, intellectual, motor, and adaptive functioning (LIMA) features are amongst the most striking features that distinguish different types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and implicitly emphasizes what individuals have in common as core social-communicative and restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features may help to more meaningfully distinguish types of autisms with differing developmental paths and differential underlying biology.

METHODS

Unsupervised data-driven subtypes were identified using stability-based relative clustering validation on publicly available Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior Scales (VABS) data (n = 615; age = 24-68 months) from the National Institute of Mental Health Data Archive (NDA). Differential developmental trajectories between subtypes were tested on longitudinal data from NDA and from an independent in-house dataset from UCSD. A subset of the UCSD dataset was also tested for subtype differences in functional and structural neuroimaging phenotypes and relationships with blood gene expression. The current subtyping model was also compared to early language outcome subtypes derived from past work.

RESULTS

Two autism subtypes can be identified based on early phenotypic LIMA features. These data-driven subtypes are robust in the population and can be identified in independent data with 98% accuracy. The subtypes can be described as Type I versus Type II autisms differentiated by relatively high versus low scores on LIMA features. These two types of autisms are also distinguished by different developmental trajectories over the first decade of life. Finally, these two types of autisms reveal striking differences in functional and structural neuroimaging phenotypes and their relationships with gene expression and may highlight unique biological mechanisms.

LIMITATIONS

Sample sizes for the neuroimaging and gene expression dataset are relatively small and require further independent replication. The current work is also limited to subtyping based on MSEL and VABS phenotypic measures.

CONCLUSIONS

This work emphasizes the potential importance of stratifying autism by a Type I versus Type II distinction focused on LIMA features and which may be of high prognostic and biological significance.

摘要

背景

早期语言、智力、运动和适应功能(LIMA)特征的表型异质性是区分不同类型自闭症个体的最显著特征之一。然而,目前的诊断标准使用自闭症的单一标签,并隐含地强调了个体在核心社交沟通和受限重复行为困难方面的共同之处。基于非核心 LIMA 特征的亚型标签可能有助于更有意义地区分具有不同发展轨迹和不同潜在生物学基础的自闭症类型。

方法

使用稳定性为基础的相对聚类验证方法,在国立精神卫生研究所数据档案(NDA)中基于公开的 Mullen 早期学习量表(MSEL)和 Vineland 适应行为量表(VABS)数据(n=615;年龄=24-68 个月)识别无监督数据驱动的亚型。在 NDA 和来自 UCSD 的独立内部数据集的纵向数据上测试亚型之间的差异发展轨迹。UCSD 数据集的一个子集也用于测试功能和结构神经影像学表型的亚型差异及其与血液基因表达的关系。当前的亚型模型也与过去工作中得出的早期语言结果亚型进行了比较。

结果

可以根据早期表型 LIMA 特征确定两种自闭症亚型。这些数据驱动的亚型在人群中是稳健的,可以在具有 98%准确性的独立数据中识别。这些亚型可以描述为 I 型和 II 型自闭症,通过 LIMA 特征的相对高分和低分来区分。这两种类型的自闭症也在生命的第一个十年中表现出不同的发展轨迹。最后,这两种类型的自闭症在功能和结构神经影像学表型及其与基因表达的关系方面表现出显著差异,可能突出了独特的生物学机制。

局限性

神经影像学和基因表达数据集的样本量相对较小,需要进一步的独立复制。目前的工作也仅限于基于 MSEL 和 VABS 表型测量的亚型分类。

结论

这项工作强调了通过聚焦于 LIMA 特征的 I 型与 II 型区分对自闭症进行分层的潜在重要性,这可能具有高度的预后和生物学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15ee/11443946/bc9f8ec15ead/13229_2024_613_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验