Wang Jinnong, Wang Ze, He Jie, Han Lin, Li Xin, Han Keyi, Chen Tianen, Zhou Qianyu, Yang Luobai, Zhao Dongye, Wang Yuanhao, Wang Shifeng
Key Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous Region, College of Science, Tibet University, Lhasa, 850000, P. R. China.
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, P. R. China.
Small. 2024 Dec;20(50):e2407659. doi: 10.1002/smll.202407659. Epub 2024 Sep 30.
Photo-assisted electrocatalysis has arisen as a promising approach for hydrogen generation by incorporating photocatalysts into electrocatalysts. 2D SnS is a photocatalyst that absorbs visible light. However, the rapid recombination of photo-generated electron-hole pairs significantly reduces the overall photocatalytic efficiency of SnS, limiting its practical application. Thus, this study prepares an in situ heterojunction SnS@SnO using a one-step hydrothermal method. The degradation efficiency of methyl orange (MO) using SnS@SnO is measured, achieving a degradation rate of 92.75% within 1 h, which is 1.9 times higher than that of pure SnS. Additionally, FeNiS/SnS@SnO is synthesized and exhibited significant improvements in the photo-assisted oxygen evolution reaction (OER). It achieves an overpotential of 260 mV and a Tafel slope of 65.1 mV dec at 10 mA cm, showing reductions of 11.8% and 31.8%, respectively, compared to FeNiS alone. These enhancements highlight the strong photo-response capability of SnS@SnO. Under the internal electric field of SnS@SnO, the photogenerated electrons in the conduction band of SnS quickly move toward SnO, facilitating efficient photocatalytic reactions. FeNiS, with a lower Fermi energy level (E), facilitates electron transfer from SnS@SnO and enhances OER performance by efficiently participating in the reaction. This study paves a new path for 2D photocatalyst materials.
通过将光催化剂引入电催化剂中,光辅助电催化已成为一种很有前景的制氢方法。二维硫化锡(SnS)是一种能吸收可见光的光催化剂。然而,光生电子 - 空穴对的快速复合显著降低了SnS的整体光催化效率,限制了其实际应用。因此,本研究采用一步水热法制备了原位异质结SnS@SnO。测定了SnS@SnO对甲基橙(MO)的降解效率,在1小时内降解率达到92.75%,比纯SnS高1.9倍。此外,合成了FeNiS/SnS@SnO,其在光辅助析氧反应(OER)中表现出显著改善。在10 mA cm时,其过电位为260 mV,塔菲尔斜率为65.1 mV dec,与单独的FeNiS相比,分别降低了11.8%和31.8%。这些增强效果突出了SnS@SnO强大的光响应能力。在SnS@SnO的内电场作用下,SnS导带中的光生电子迅速向SnO移动,促进了高效的光催化反应。费米能级(E)较低的FeNiS促进了电子从SnS@SnO的转移,并通过有效参与反应提高了OER性能。本研究为二维光催化剂材料开辟了一条新途径。