Suppr超能文献

一种用于有机介晶的非经典合成策略。

A non-classical synthetic strategy for organic mesocrystals.

作者信息

Wang Shaoyan, Tran Thu Ha, Jia Jia, Feng Yuhua

机构信息

CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics Chinese Academy of Sciences (SICCAS), Shanghai, China.

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

出版信息

Front Chem. 2024 Sep 16;12:1454650. doi: 10.3389/fchem.2024.1454650. eCollection 2024.

Abstract

Mesocrystals are ordered nanoparticle superstructures, often with internal porosity, which receive much recent research interest in catalysis, energy storage, sensors, and biomedicine area. Understanding the mechanism of synthetic routes is essential for precise control of size and structure that affect the function of mesocrystals. The classical synthetic strategy of mesocrystal was formed via self-assembly of nanoparticles with a faceted inorganic core but a denser (or thicker) shell of organic molecules. However, the potential materials and synthetic handles still need to be explored to meet new applications. In this work, we develop a non-classical synthetic strategy for organic molecules, such as tetrakis (4-hydroxyphenyl) ethylene (TPE-4OH), tetrakis (4-bromophenyl) ethylene (TPE-4Br), and benzopinacole, to produce mesocrystals with composed of microrod arrays via co-solvent-induced crystal transformation. The aligned nanorods are grown epitaxially onto organic microplates, directed by small lattice mismatch between plates and rods. Thus, the present work offers general synthetic handle for establishing well-organized organic mesocrystals.

摘要

介晶是有序的纳米颗粒超结构,通常具有内部孔隙率,近年来在催化、储能、传感器和生物医学领域受到了广泛的研究关注。了解合成路线的机制对于精确控制影响介晶功能的尺寸和结构至关重要。介晶的经典合成策略是通过具有多面无机核心但有机分子外壳更致密(或更厚)的纳米颗粒自组装形成的。然而,仍需要探索潜在的材料和合成方法以满足新的应用需求。在这项工作中,我们开发了一种非经典的合成策略,用于合成有机分子,如四(4-羟基苯基)乙烯(TPE-4OH)、四(4-溴苯基)乙烯(TPE-4Br)和苯频哪醇,通过共溶剂诱导的晶体转变来制备由微棒阵列组成的介晶。排列整齐的纳米棒在外延生长到有机微板上,这是由板和棒之间小的晶格失配所引导的。因此,本工作为建立有序的有机介晶提供了通用的合成方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3b7/11439792/8d96461e4dc2/fchem-12-1454650-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验