Taylor R W, Chapman C J, Pfeiffer D R
Biochemistry. 1985 Aug 27;24(18):4852-9. doi: 10.1021/bi00339a019.
The monovalent cation complexation properties of ionophore A23187 in methanol-water (65-95% w/w) and bound to unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) are contrasted. In both solution and vesicle-containing systems, 1:1 complexes between the ionophore and Li+ or Na+ predominate. The analogous complexes with K+, Rb+, and Cs+, which exist in methanol, are not detected on DMPC vesicles by changes in the absorption or fluorescence emission spectra of the ionophore. In solution, the logarithms of stability constants (log KMA) for both the LiA and NaA complexes increase by 1.5 units over the range of solvent polarity encompassed by 65% methanol-water to methanol. Selectivity for Li+ vs. Na+ is constant at a ratio of 5 in these solutions. On DMPC vesicles, selectivity for Li+ vs. Na+ is improved 15-fold with log KbLiA (3.23 +/- 0.03, T = 25 degrees C, mu = 0.05 M) being comparable to the value obtained in 80% methanol-water. In the latter solvent, increasing ionic strength (0.005-0.085 M) has little effect on log KLiA or log KHA but increases these constants by 0.4-0.5 unit in the DMPC vesicle system. Transition from the vesicle liquid-crystalline to gel-phase state reduces log KbLiA and log KbNaA by approximately 0.6 unit but has no effect on log KbHA. Thermodynamic parameters for formation of HA, LiA, and NaA in 80% methanol-water and on DMPC vesicles are reported. Analysis of these data and related considerations suggests that differences in the membrane interaction energies of particular ionophore species dominate in establishing the observed difference in complexation properties between the solution and vesicle-containing systems.