State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany.
New Phytol. 2024 Dec;244(6):2382-2395. doi: 10.1111/nph.20168. Epub 2024 Oct 1.
Rice grains typically contain relatively high levels of toxic arsenic (As) but low levels of essential micronutrients. Biofortification of essential micronutrients while decreasing As accumulation in rice would benefit human nutrition and health. We generated transgenic rice expressing a gain-of-function mutant allele astol1 driven by the OsGPX1 promoter. astol1 encodes a plastid-localized O-acetylserine (thiol) lyase (OAS-TL) with Ser189Asn substitution (OsASTOL1), which enhances cysteine biosynthesis by forming an indissociable cysteine synthase complex with its partner serine acetyltransferase (SAT). The effects on growth, As tolerance, and nutrient and As accumulation in rice grain were evaluated in hydroponic, pot and field experiments. The expression of OsASTOL1 in pOsGPX1::astol1 transgenic lines enhanced SAT activity, sulphate uptake, biosynthesis of cysteine, glutathione, phytochelatins and nicotianamine, and enhanced tolerance to As. The expression of OsASTOL1 decreased As accumulation while increased the accumulation of multiple macronutrients (especially sulphur, nitrogen and potassium) and micronutrients (especially zinc and selenium) in rice grain in a pot experiment and two field experiments, and had little effect on plant growth and grain yield. Our study provides a new strategy to genetically engineer rice to biofortify multiple essential nutrients, reducing As accumulation in rice grain and enhancing As tolerance simultaneously.
稻米通常含有相对较高水平的有毒砷(As),但必需的微量营养素含量较低。在降低稻米中砷积累的同时,对必需微量营养素进行生物强化将有益于人类营养和健康。我们利用 OsGPX1 启动子驱动的功能获得型突变体 astol1 ,生成了表达转基因水稻。astol1 编码一种定位于质体的 O-乙酰丝氨酸(硫醇)裂解酶(OAS-TL),其 Ser189Asn 取代(OsASTOL1),通过与其伴侣丝氨酸乙酰转移酶(SAT)形成不可分割的半胱氨酸合酶复合物,增强半胱氨酸生物合成。在水培、盆栽和田间试验中评估了其对生长、砷耐受性以及营养和砷在稻米中的积累的影响。pOsGPX1::astol1 转基因系中 OsASTOL1 的表达增强了 SAT 活性、硫酸盐吸收、半胱氨酸、谷胱甘肽、植物螯合肽和烟酰胺的生物合成,并增强了对砷的耐受性。在盆栽试验和两项田间试验中,OsASTOL1 的表达降低了稻米中砷的积累,同时增加了稻米中多种大量营养素(特别是硫、氮和钾)和微量营养素(特别是锌和硒)的积累,对植物生长和籽粒产量影响不大。我们的研究提供了一种新的策略,用于通过遗传工程来生物强化多种必需营养素,同时降低稻米中砷的积累并增强砷的耐受性。