Universiti Sains Malaysia, School of Medical Sciences, Department of Otorhinolaryngology-Head & Neck Surgery, Kubang Kerian, Kelantan, Malaysia.
Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
Med J Malaysia. 2024 Sep;79(5):615-625.
The pathogenesis of nasopharyngeal carcinoma (NPC) is intricate, influenced by a combination of factors including host genetics, viral infection and environmental elements, resulting in genetic and epigenetic modifications. Despite a positive prognosis for early-stage patients, most NPC cases are diagnosed at an advanced stage, highlighting the pressing need for enhanced accessibility to early diagnosis and treatment. The underlying molecular pathways driving NPC progression remain elusive. This study focuses on the use of bioinformatics techniques and databases in carrying out research to gain insights into gene relevance and potential applications in NPC.
Searches encompassed articles published in English from January 2017 to June 2024, utilising keywords such as 'nasopharyngeal carcinoma,' 'bioinformatics,' 'gene expression' and 'gene microarrays' across PubMed, MEDLINE and Scopus databases. The Gene Expression Omnibus (GEO) database was utilised to access NPC messenger RNA (mRNA) expression profiling studies.
Most studies utilised the GEO database to identify differentially expressed genes (DEGs) between normal and NPC tissues, followed by functional analysis using gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. Protein protein interaction (PPI) networks of DEGs were commonly constructed using STRING and visualised with Cytoscape software. The integration of GO and KEGG pathway analysis alongside PPI network construction provides valuable insights into the dysregulated pathways and molecular mechanisms underlying NPC pathogenesis. Microarray analysis, particularly datasets such as GSE12452, GSE64634 and GSE34573, has enabled the identification of DEGs associated with NPC. PPI network analysis identifies hub genes, such as DNALI1, DNAI2 and RSPH9, implicated in NPC pathogenesis. Validation of gene expression patterns through platforms like GEPIA and Oncomine validates the clinical relevance of identified biomarkers. Furthermore, studies employing RNA sequencing and bioinformatics approaches uncover novel genes involved in NPC radio resistance and prognosis, paving the way for personalised therapeutic strategies.
Integration of bioinformatics analysis provides insights into the complexity of tumour biology and potential molecular pathways, enabling the development of enhanced strategies for early detection, outcome prediction, recurrence detection and therapeutic approaches for NPC.
鼻咽癌(NPC)的发病机制复杂,受宿主遗传、病毒感染和环境因素等多种因素的影响,导致遗传和表观遗传改变。尽管早期患者的预后较好,但大多数 NPC 病例在晚期才被诊断出来,这凸显了提高早期诊断和治疗可及性的迫切需求。推动 NPC 进展的潜在分子途径仍不清楚。本研究专注于使用生物信息学技术和数据库进行研究,以深入了解基因相关性及其在 NPC 中的潜在应用。
检索了 2017 年 1 月至 2024 年 6 月期间以英文发表的文章,使用了“鼻咽肿瘤”、“生物信息学”、“基因表达”和“基因微阵列”等关键词,在 PubMed、MEDLINE 和 Scopus 数据库中进行搜索。使用基因表达综合(GEO)数据库访问 NPC 信使 RNA(mRNA)表达谱研究。
大多数研究利用 GEO 数据库来识别正常组织和 NPC 组织之间差异表达的基因(DEGs),然后使用基因本体(GO)和京都基因与基因组百科全书(KEGG)通路进行功能分析。DEGs 的蛋白质-蛋白质相互作用(PPI)网络通常使用 STRING 构建,并使用 Cytoscape 软件可视化。GO 和 KEGG 通路分析以及 PPI 网络构建的整合为 NPC 发病机制中失调的途径和分子机制提供了有价值的见解。微阵列分析,特别是 GSE12452、GSE64634 和 GSE34573 等数据集,已经能够识别与 NPC 相关的 DEGs。PPI 网络分析确定了与 NPC 发病机制相关的枢纽基因,如 DNALI1、DNAI2 和 RSPH9。通过 GEPIA 和 Oncomine 等平台验证基因表达模式,验证了所鉴定生物标志物的临床相关性。此外,采用 RNA 测序和生物信息学方法的研究揭示了 NPC 放射抵抗和预后相关的新基因,为个性化治疗策略铺平了道路。
生物信息学分析的整合提供了对肿瘤生物学复杂性和潜在分子途径的深入了解,为 NPC 的早期检测、预后预测、复发检测和治疗方法的开发提供了更有效的策略。