Suppr超能文献

识别股票市场中的极端事件:拓扑数据分析。

Identifying extreme events in the stock market: A topological data analysis.

机构信息

Department of Physics, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.

Data Science Program, George Washington University, Washington, DC 20052, USA.

出版信息

Chaos. 2024 Oct 1;34(10). doi: 10.1063/5.0220424.

Abstract

This paper employs Topological Data Analysis (TDA) to detect extreme events (EEs) in the stock market at a continental level. Previous approaches, which analyzed stock indices separately, could not detect EEs for multiple time series in one go. TDA provides a robust framework for such analysis and identifies the EEs during the crashes for different indices. The TDA analysis shows that L1, L2 norms and Wasserstein distance (WD) of the world leading indices rise abruptly during the crashes, surpassing a threshold of μ+4∗σ, where μ and σ are the mean and the standard deviation of norm or WD, respectively. Our study identified the stock index crashes of the 2008 financial crisis and the COVID-19 pandemic across continents as EEs. Given that different sectors in an index behave differently, a sector-wise analysis was conducted during the COVID-19 pandemic for the Indian stock market. The sector-wise results show that after the occurrence of EE, we have observed strong crashes surpassing μ+2∗σ for an extended period for the banking, automobile, IT, realty, energy, and metal sectors. While for the pharmaceutical and FMCG sectors, no significant spikes were noted. Hence, TDA also proves successful in identifying the duration of shocks after the occurrence of EEs. This also indicates that the banking sector continued to face stress and remained volatile even after the crash. This study gives us the applicability of TDA as a powerful analytical tool to study EEs in various fields.

摘要

本文采用拓扑数据分析(TDA)方法在大陆层面上检测股票市场中的极端事件(EEs)。以往的方法分别分析股票指数,无法一次性检测多个时间序列的 EEs。TDA 为这种分析提供了一个强大的框架,并确定了不同指数在崩盘期间的 EEs。TDA 分析表明,在崩盘期间,世界领先指数的 L1、L2 范数和 Wasserstein 距离(WD)突然上升,超过了μ+4∗σ的阈值,其中μ和σ分别是范数或 WD 的均值和标准差。我们的研究确定了 2008 年金融危机和 COVID-19 大流行期间的股票指数崩盘为 EEs。由于指数中的不同板块表现不同,在 COVID-19 大流行期间对印度股市进行了板块分析。板块分析结果表明,在 EE 发生后,我们观察到银行业、汽车业、IT 业、房地产、能源和金属业的强烈崩盘,持续时间超过μ+2∗σ。而对于制药和快速消费品行业,没有明显的高峰。因此,TDA 也成功地识别了 EE 发生后冲击的持续时间。这也表明,即使在崩盘之后,银行业仍继续面临压力,并且仍然不稳定。本研究证明了 TDA 作为一种强大的分析工具在各个领域研究 EEs 的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验