Qu Honglong, Liu Kaili, Li Qiaolin, Cao Tiantian, Chen Gang, Guan Hongtao, Dong Chengjun, Yin Zongyou
School of Materials and Energy, Yunnan University, Kunming 650091, China.
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
J Phys Chem Lett. 2024 Oct 10;15(40):10181-10189. doi: 10.1021/acs.jpclett.4c02521. Epub 2024 Oct 1.
Metal-organic frameworks (MOFs) have been widely used as versatile precursors to fabricate functional nanomaterials with well-defined structures for various applications. Herein, the presynthesized Ni-MOF nanosheets were grown on a Ni foam (NF) substrate, which then guided the nucleation and further growth of Prussian blue analogues (PBA) nanocubes to form MOF-on-MOF of the PBA/Ni-MOF film. This film was subsequently converted into a CoP/NiP heterostructure. The NF-supported CoP/NiP composites exhibited excellent supercapacitor performance, delivering a high specific capacity of 5124.2 mF cm at 1 mA cm and a remarkable capacity retention of 80.69% after 3000 cycles at 10 mA cm. An asymmetric supercapacitor assembled using CoP/NiP/NF as the cathode and activated carbon as the anode yielded a maximum energy density of 0.34 mWh cm at a power density of 1.50 mW cm. The enhanced supercapacitor performance is attributed to the synergistic effects of the NiP and CoP components with multiple valence states as well as the unique hierarchical structure, which provides efficient pathways for electron and ion transport while mitigating volume expansion during energy storage. This synthetic strategy demonstrates an effective approach to fabricate phosphide-based hybrid materials for high-performance supercapacitor applications.
金属有机框架材料(MOFs)已被广泛用作通用前驱体,以制备具有明确结构的功能纳米材料用于各种应用。在此,预先合成的镍基金属有机框架纳米片生长在泡沫镍(NF)基底上,随后引导普鲁士蓝类似物(PBA)纳米立方体的成核和进一步生长,形成PBA/Ni-MOF膜的MOF-on-MOF结构。该膜随后被转化为CoP/NiP异质结构。NF负载的CoP/NiP复合材料表现出优异的超级电容器性能,在1 mA cm时具有5124.2 mF cm的高比电容,在10 mA cm下循环3000次后容量保持率高达80.69%。以CoP/NiP/NF作为阴极、活性炭作为阳极组装的不对称超级电容器在功率密度为1.50 mW cm时,最大能量密度为0.34 mWh cm。超级电容器性能的提升归因于具有多种价态的NiP和CoP组分的协同效应以及独特的分级结构,该结构为电子和离子传输提供了有效途径,同时减轻了储能过程中的体积膨胀。这种合成策略展示了一种制备用于高性能超级电容器应用的磷化物基混合材料的有效方法。