Suppr超能文献

通过深度学习技术对德黑兰大城市空气质量进行预测建模。

Predictive modeling of air quality in the Tehran megacity via deep learning techniques.

作者信息

Rad Abdullah Kaviani, Nematollahi Mohammad Javad, Pak Abbas, Mahmoudi Mohammadreza

机构信息

Department of Environmental Engineering and Natural Resources, College of Agriculture, Shiraz University, Shiraz, 71946-85111, Iran.

Department of Geology, Faculty of Sciences, Urmia University, Urmia, 57561-51818, Iran.

出版信息

Sci Rep. 2025 Jan 8;15(1):1367. doi: 10.1038/s41598-024-84550-6.

Abstract

Air pollution is a significant challenge in metropolitan areas, where increasing amounts of air pollutants threaten public health and environmental safety. The present study aims to forecast the concentrations of various air pollutants, including CO, O, NO, SO, PM, and PM, from 2013 to 2023 in the Tehran megacity, Iran, via deep learning (DL) models and evaluate their effectiveness over conventional machine learning (ML) methods. Key driving variables, including temperature, relative humidity, dew point, wind speed, and air pressure, were considered. R-squared (R), root-mean-square error (RMSE), mean absolute error (MAE), and mean-square error (MSE) were used to assess and compare the models. This research demonstrated that DL models typically outperform ML models in forecasting air pollution. Gated recurrent units (GRUs), fully connected neural networks (FCNNs), and convolutional neural networks (CNNs) recorded R and MSE values of 0.5971 and 42.11 for CO, 0.7873 and 171.40 for O, and 0.4954 and 25.17 for SO, respectively. Consequently, the FCNN and GRU presented remarkable performance in predicting NO (R = 0.6476 and MSE = 75.16), PM (R = 0.8712 and MSE = 45.11), and PM (R = 0.9276 and MSE = 58.12) concentrations. In terms of operational speed, the FCNN model exhibited the most efficiency, with a minimum and maximum runtime of 13 and 28 s, respectively. The feature importance analysis suggested that CO, O and NO, SO and PM, and PM are most affected by temperature, humidity, PM, and PM, respectively. Thus, temperature and humidity were the primary factors affecting the variability in pollutant concentrations. The conclusions confirm that the DL models achieve significant accuracy and serve as essential instruments for managing air pollution, providing practical insights for decision-makers to adopt efficient air quality control strategies.

摘要

空气污染是大都市地区面临的一项重大挑战,在这些地区,越来越多的空气污染物威胁着公众健康和环境安全。本研究旨在通过深度学习(DL)模型预测2013年至2023年伊朗德黑兰大城市中各种空气污染物的浓度,包括一氧化碳(CO)、臭氧(O₃)、一氧化氮(NO)、二氧化硫(SO₂)、细颗粒物(PM₂.₅)和可吸入颗粒物(PM₁₀),并评估其相对于传统机器学习(ML)方法的有效性。研究考虑了关键驱动变量,包括温度、相对湿度、露点、风速和气压。使用决定系数(R²)、均方根误差(RMSE)、平均绝对误差(MAE)和均方误差(MSE)来评估和比较模型。本研究表明,在预测空气污染方面,深度学习模型通常优于机器学习模型。门控循环单元(GRU)、全连接神经网络(FCNN)和卷积神经网络(CNN)对一氧化碳的预测,R²值和MSE值分别为0.5971和42.11,对臭氧的预测分别为0.7873和171.40,对二氧化硫的预测分别为0.4954和25.17。因此,全连接神经网络和门控循环单元在预测一氧化氮(R² = 0.6476,MSE = 75.16)、细颗粒物(R² = 0.8712,MSE = 45.11)和可吸入颗粒物(R² = 0.9276,MSE = 58.12)浓度方面表现出色。在运行速度方面,全连接神经网络模型效率最高,最短和最长运行时间分别为13秒和28秒。特征重要性分析表明,一氧化碳、臭氧和一氧化氮、二氧化硫和细颗粒物、可吸入颗粒物分别受温度、湿度、细颗粒物和可吸入颗粒物的影响最大。因此,温度和湿度是影响污染物浓度变化的主要因素。研究结论证实,深度学习模型具有显著的准确性,是管理空气污染的重要工具,为决策者采用有效的空气质量控制策略提供了实用见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95b5/11711626/201963a8b3d6/41598_2024_84550_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验