Liu Qingwei, Chen Jing, Yao Yongwei, Wang Leshan, Qiu Bingsen, Wang Yongtian
Opt Lett. 2024 Oct 1;49(19):5559-5562. doi: 10.1364/OL.532049.
Deep learning-based computer-generated holography offers significant advantages for real-time holographic displays. Most existing methods typically utilize convolutional neural networks (CNNs) as the basic framework for encoding phase-only holograms (POHs). However, recent studies have shown that CNNs suffer from spectral bias, resulting in insufficient learning of high-frequency components. Here, we propose a novel, to our knowledge, frequency aware network for generating high-quality POHs. A multilevel wavelet-based channel attention network (MW-CANet) is designed to address spectral bias. By employing multi-scale wavelet transformations, MW-CANet effectively captures both low- and high-frequency features independently, thus facilitating an enhanced representation of high-frequency information crucial for accurate phase inference. Furthermore, MW-CANet utilizes an attention mechanism to discern and allocate additional focus to critical high-frequency components. Simulations and optical experiments confirm the validity and feasibility of our method.
基于深度学习的计算机生成全息术为实时全息显示提供了显著优势。大多数现有方法通常利用卷积神经网络(CNN)作为编码纯相位全息图(POH)的基本框架。然而,最近的研究表明,CNN存在频谱偏差,导致对高频分量的学习不足。在此,据我们所知,我们提出了一种新颖的频率感知网络来生成高质量的POH。设计了一种基于多级小波的通道注意力网络(MW-CANet)来解决频谱偏差问题。通过采用多尺度小波变换,MW-CANet有效地独立捕获低频和高频特征,从而有助于增强对准确相位推断至关重要的高频信息的表示。此外,MW-CANet利用注意力机制来识别并将额外的注意力分配给关键的高频分量。仿真和光学实验证实了我们方法的有效性和可行性。