Suppr超能文献

通过多级小波学习和通道注意力实现频率感知高质量计算机生成全息术

Frequency aware high-quality computer-generated holography via multilevel wavelet learning and channel attention.

作者信息

Liu Qingwei, Chen Jing, Yao Yongwei, Wang Leshan, Qiu Bingsen, Wang Yongtian

出版信息

Opt Lett. 2024 Oct 1;49(19):5559-5562. doi: 10.1364/OL.532049.

Abstract

Deep learning-based computer-generated holography offers significant advantages for real-time holographic displays. Most existing methods typically utilize convolutional neural networks (CNNs) as the basic framework for encoding phase-only holograms (POHs). However, recent studies have shown that CNNs suffer from spectral bias, resulting in insufficient learning of high-frequency components. Here, we propose a novel, to our knowledge, frequency aware network for generating high-quality POHs. A multilevel wavelet-based channel attention network (MW-CANet) is designed to address spectral bias. By employing multi-scale wavelet transformations, MW-CANet effectively captures both low- and high-frequency features independently, thus facilitating an enhanced representation of high-frequency information crucial for accurate phase inference. Furthermore, MW-CANet utilizes an attention mechanism to discern and allocate additional focus to critical high-frequency components. Simulations and optical experiments confirm the validity and feasibility of our method.

摘要

基于深度学习的计算机生成全息术为实时全息显示提供了显著优势。大多数现有方法通常利用卷积神经网络(CNN)作为编码纯相位全息图(POH)的基本框架。然而,最近的研究表明,CNN存在频谱偏差,导致对高频分量的学习不足。在此,据我们所知,我们提出了一种新颖的频率感知网络来生成高质量的POH。设计了一种基于多级小波的通道注意力网络(MW-CANet)来解决频谱偏差问题。通过采用多尺度小波变换,MW-CANet有效地独立捕获低频和高频特征,从而有助于增强对准确相位推断至关重要的高频信息的表示。此外,MW-CANet利用注意力机制来识别并将额外的注意力分配给关键的高频分量。仿真和光学实验证实了我们方法的有效性和可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验