Suppr超能文献

成人肺移植患者他克莫司群体药代动力学模型的外部评价:如何提高模型的预测能力?

External evaluation of tacrolimus population pharmacokinetic models in adult lung transplant patients: How to enhance the predictive ability of the model?

机构信息

Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

出版信息

Int Immunopharmacol. 2024 Dec 25;143(Pt 1):113225. doi: 10.1016/j.intimp.2024.113225. Epub 2024 Sep 30.

Abstract

PURPOSE

Tacrolimus is the cornerstone of current immunosuppressive strategies after lung transplantation. However, its narrow therapeutic range and considerable pharmacokinetic variability pose challenges for individualized treatment. Several tacrolimus population pharmacokinetic (popPK) models have been developed for precision dosing in adult lung transplant patients. However, their applicability across different clinical settings remains uncertain. The aim of this study was to evaluate the external predictability of these models and identify influential factors.

METHODS

Published models were systematically retrieved and assessed based on an external dataset of 39 patients (1240 tacrolimus trough concentrations) using three approaches: (1) prediction-based diagnosis using dosing records and patient characteristics; (2) simulation-based diagnosis, with prediction- and variability-corrected visual predictive checks (pvcVPC) and normalized prediction distribution error tests (NPDE); and (3) Bayesian forecasting using one to four observations for posterior predictions. We also investigated the impact of model structure and covariates on predictability.

RESULTS

The predictive performance of six published models was externally evaluated, but none demonstrated satisfactory accuracy in prediction- and simulation-based diagnosis. Bayesian forecasting yielded satisfactory results with only one prior observation and optimal predictive performance with 2-3 priors for all included models. The structural model parameterized on plasma tacrolimus concentration outperformed others. Significant correlations were observed between prediction-error and daily tacrolimus dose, postoperative day, and voriconazole co-administration.

CONCLUSIONS

The overall predictive performance of all published models was unsatisfactory, making direct extrapolation inappropriate. However, Bayesian forecasting significantly improves predictive performance. Utilizing plasma tacrolimus concentration for parameter estimation can improve the predictive ability of tacrolimus popPK models.

摘要

目的

他克莫司是肺移植后当前免疫抑制策略的基石。然而,其治疗窗狭窄和相当大的药代动力学变异性给个体化治疗带来了挑战。已经开发了几种他克莫司群体药代动力学(popPK)模型,用于成人肺移植患者的精准给药。然而,其在不同临床环境下的适用性仍不确定。本研究旨在评估这些模型的外部预测能力并确定影响因素。

方法

系统检索了已发表的模型,并基于 39 名患者(1240 个他克莫司谷浓度)的外部数据集,使用三种方法进行评估:(1)基于剂量记录和患者特征的预测性诊断;(2)模拟性诊断,使用预测和变异性校正的可视化预测检查(pvcVPC)和归一化预测分布误差检验(NPDE);(3)使用一个到四个观测值进行后验预测的贝叶斯预测。我们还研究了模型结构和协变量对可预测性的影响。

结果

对六个已发表模型的预测性能进行了外部评估,但在预测和模拟诊断中,没有一个模型表现出令人满意的准确性。贝叶斯预测仅使用一个先验观测值就产生了令人满意的结果,对于所有纳入的模型,使用 2-3 个先验观测值可以获得最佳的预测性能。基于血浆他克莫司浓度参数化的结构模型表现优于其他模型。预测误差与每日他克莫司剂量、术后天数和伏立康唑联合用药之间存在显著相关性。

结论

所有已发表模型的整体预测性能均不理想,因此不适合直接外推。然而,贝叶斯预测显著提高了预测性能。利用血浆他克莫司浓度进行参数估计可以提高他克莫司 popPK 模型的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验