Suppr超能文献

红景天苷通过硬脂酰辅酶A去饱和酶1(SCD1)介导的脂肪生成和核受体辅助激活因子4(NCOA4)介导的铁自噬使三阴性乳腺癌对铁死亡敏感。

Salidroside sensitizes Triple-negative breast cancer to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy.

作者信息

Huang Guiqin, Cai Yawen, Ren Menghui, Zhang Xiaoyu, Fu Yu, Cheng Run, Wang Yingdi, Miao Mingxing, Zhu Lingpeng, Yan Tianhua

机构信息

School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China.

National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.

出版信息

J Adv Res. 2024 Sep 29. doi: 10.1016/j.jare.2024.09.027.

Abstract

INTRODUCTION

Triple-negative breast cancer (TNBC) is the primary cause of breast cancer-induced death in women. Literature has confirmed the benefits of Salidroside (Sal) in treating TNBC. However, the study about potential therapeutic targets and mechanisms of Sal-anchored TNBC remains limited.

OBJECTIVE

This study was designed to explore the main targets and potential mechanisms of Sal against TNBC.

METHODS

Network pharmacology, bioinformatics, and machine learning algorithm strategies were integrated to examine the role, potential targets, and mechanisms of the Sal act in TNBC. MDA-MB-231 cells and tumor-bearing nude mice were chosen for in vitro and in vivo experimentation. Cell viability and cytotoxicity were determined using CCK-8, LDH test, and Calcein-AM/PI staining. Antioxidant defense, lipid peroxidation, and iron metabolism were explored using glutathione, glutathione peroxidase, malondialdehyde (MDA), C11-BODIPY 581/591 probe, and FerroOrange dye. Glutathione peroxidase 4 (GPX4) or stearoyl-CoA desaturase 1 (SCD1) overexpression or nuclear receptor co-activator 4 (NCOA4) deficiency was performed to demonstrate the mechanism of Sal on TNBC.

RESULTS

The prediction results confirmed that 22 ferroptosis-related genes were identified in Sal and TNBC, revealing that the potential mechanism of the Sal act on TNBC was linked with ferroptosis. Besides, these genes were mainly involved in the mTOR, PI3K/AKT, and autophagy signaling pathway by functional enrichment analysis. The in vitro validation results confirmed that Sal inhibited TNBC cell proliferation by modulating ferroptosis via elevation of intracellular Fe and lipid peroxidation. Mechanistically, Sal sensitized TNBC cells to ferroptosis by inhibiting the PI3K/AKT/mTOR axis, thereby suppressing SCD1-mediated lipogenesis of monounsaturated fatty acids to induce lipid peroxidation, additionally facilitating NCOA4-mediated ferritinophagy to increase intracellular Fe content. The GPX4 or SCD1 overexpression or NCOA4 deficiency results further supported our mechanistic studies. In vivo experimentation confirmed that Sal is vital for slowing down tumor growth by inducing ferroptosis.

CONCLUSIONS

Overall, this study elucidates TNBC pathogenesis closely linked to ferroptosis and identifies potential biomarkers in TNBC. Meanwhile, the study elucidates that Sal sensitizes TNBC to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy, regulated by PI3K/AKT/mTOR signaling pathways. Our findings provide a theoretical basis for applying Sal to treat TNBC.

摘要

引言

三阴性乳腺癌(TNBC)是女性乳腺癌致死的主要原因。文献已证实红景天苷(Sal)在治疗TNBC方面的益处。然而,关于Sal治疗TNBC的潜在治疗靶点和机制的研究仍然有限。

目的

本研究旨在探索Sal抗TNBC的主要靶点和潜在机制。

方法

整合网络药理学、生物信息学和机器学习算法策略,以研究Sal在TNBC中的作用、潜在靶点和机制。选用MDA-MB-231细胞和荷瘤裸鼠进行体外和体内实验。使用CCK-8、LDH检测和Calcein-AM/PI染色测定细胞活力和细胞毒性。使用谷胱甘肽、谷胱甘肽过氧化物酶、丙二醛(MDA)、C11-BODIPY 581/591探针和FerroOrange染料探索抗氧化防御、脂质过氧化和铁代谢。通过过表达谷胱甘肽过氧化物酶4(GPX4)或硬脂酰辅酶A去饱和酶1(SCD1)或缺失核受体共激活因子4(NCOA4)来阐明Sal对TNBC的作用机制。

结果

预测结果证实,在Sal和TNBC中鉴定出22个铁死亡相关基因,揭示了Sal作用于TNBC的潜在机制与铁死亡有关。此外,通过功能富集分析发现这些基因主要参与mTOR、PI3K/AKT和自噬信号通路。体外验证结果证实,Sal通过提高细胞内铁和脂质过氧化来调节铁死亡,从而抑制TNBC细胞增殖。机制上,Sal通过抑制PI3K/AKT/mTOR轴使TNBC细胞对铁死亡敏感,从而抑制SCD1介导的单不饱和脂肪酸脂肪生成以诱导脂质过氧化,此外还促进NCOA4介导的铁自噬以增加细胞内铁含量。GPX4或SCD1过表达或NCOA4缺失的结果进一步支持了我们的机制研究。体内实验证实,Sal通过诱导铁死亡对减缓肿瘤生长至关重要。

结论

总体而言,本研究阐明了TNBC发病机制与铁死亡密切相关,并鉴定出TNBC中的潜在生物标志物。同时,该研究阐明了Sal通过PI3K/AKT/mTOR信号通路调控的SCD1介导的脂肪生成和NCOA4介导的铁自噬使TNBC对铁死亡敏感。我们的研究结果为应用Sal治疗TNBC提供了理论依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验