Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA.
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
New Phytol. 2024 Dec;244(5):1847-1863. doi: 10.1111/nph.20121. Epub 2024 Oct 1.
Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf-to-air vapor pressure difference (VPD) to fixed values, and recorded robust reversible warming-induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO, and the temperature-sensitive proteins, Phytochrome B (phyB) and EARLY-FLOWERING-3 (ELF3). We confirmed that phot1-5/phot2-1 leaves lacking blue-light photoreceptors showed partially reduced warming-induced stomatal opening. Furthermore, ABA-biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, Arabidopsis (dicot) and Brachypodium distachyon (monocot) mutants lacking guard cell CO sensors and signaling mechanisms, including ht1, mpk12/mpk4-gc, and cbc1/cbc2 abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis. We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO assimilation and stomatal CO sensing. Additionally, increasing heat stress functions via a distinct photosynthesis-uncoupled stomatal opening pathway.
植物通过控制气孔开度来整合环境刺激因素,以优化光合作用与水分损失之间的平衡。然而,对于温度升高引起的气孔响应及其潜在的分子遗传机制,人们的研究还不够深入。我们开发了一种方法,可以将叶片与空气的蒸气压差(VPD)固定在特定值,并记录到完整植株中稳健的、可逆的升温诱导气孔开放。我们分析了在保卫细胞信号通路中发生突变的突变体的气孔温度响应,这些突变体的信号通路涉及蓝光、脱落酸(ABA)、CO 和对温度敏感的蛋白,如光敏色素 B(phyB)和早期开花 3(ELF3)。我们证实,缺乏蓝光光受体的 phot1-5/phot2-1 叶片表现出部分减少的升温诱导气孔开放。此外,ABA 生物合成、phyB 和 ELF3 对于气孔升温反应不是必需的。引人注目的是,拟南芥(双子叶植物)和短柄草(单子叶植物)突变体缺乏保卫细胞 CO 传感器和信号机制,包括 ht1、mpk12/mpk4-gc 和 cbc1/cbc2,完全消除了气孔升温反应,这表明在不同的植物谱系中存在保守的机制。此外,升温迅速刺激光合作用,导致胞间(CO)减少。有趣的是,进一步增强热应激导致气孔开放与光合作用解耦。我们提供了遗传和生理学证据,表明气孔升温反应是由 CO 同化增加和气孔 CO 感应触发的。此外,增加热应激通过一种独特的与光合作用解耦的气孔开放途径发挥作用。