Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA.
Biology Department, Western Carolina University, Cullowhee, North Carolina, USA.
Ecol Lett. 2024 Sep;27(9):e14524. doi: 10.1111/ele.14524.
Widely documented in animals, behavioural thermoregulation mitigates negative impacts of climate change. Plants experience especially strong thermal variability but evidence for plant behavioural thermoregulation is limited. Along a montane elevation gradient, Argentina anserina flowers warm more in alpine populations than at lower elevation. We linked floral temperature with phenotypes to identify warming mechanisms and documented petal movement and pollinator visitation using time-lapse cameras. High elevation flowers were more cupped, focused light deeper within flowers and were more responsive to air temperature than low; cupping when cold and flattening when warm. At high elevation, a 20° increase in petal angle resulted in a 0.46°C increase in warming. Warming increased pollinator visitation, especially under cooler high elevation temperatures. A plasticity study revealed constitutive elevational differences in petal cupping and stronger temperature-induced floral plasticity in high elevation populations. Thus, plant populations have evolved different behavioural responses to temperature driving differences in thermoregulatory capacity.
动物的行为体温调节对缓解气候变化的负面影响有广泛的记载。植物经历了特别强烈的热变异性,但植物行为体温调节的证据有限。在一个山地海拔梯度上,阿根廷鸭跖草的花朵在高山种群中比在低海拔地区变暖更多。我们将花的温度与表型联系起来,以确定变暖的机制,并使用延时摄像机记录花瓣运动和传粉者访问。高海拔的花朵更杯状,将光线聚焦在花朵内部更深的地方,对空气温度的反应比低海拔的花朵更敏感;当温度较低时,它们会卷曲,当温度较高时,它们会变平。在高海拔地区,花瓣角度增加 20°会导致升温增加 0.46°C。变暖增加了传粉者的访问量,尤其是在高海拔地区较凉爽的温度下。一项可塑性研究表明,花瓣卷曲存在固有的海拔差异,而在高海拔地区,温度诱导的花的可塑性更强。因此,植物种群已经进化出不同的行为反应来适应温度,从而导致了不同的体温调节能力。