Suppr超能文献

多中心Ga-PSMA PET放射组学用于评估转移性去势抵抗性前列腺癌患者接受Lu-PSMA-617放射性配体治疗的疗效

Multicentric Ga-PSMA PET radiomics for treatment response assessment of Lu-PSMA-617 radioligand therapy in patients with metastatic castration-resistant prostate cancer.

作者信息

Gutsche Robin, Gülmüs Gizem, Mottaghy Felix M, Gärtner Florian, Essler Markus, von Mallek Dirk, Ahmadzadehfar Hojjat, Lohmann Philipp, Heinzel Alexander

机构信息

Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Juelich, Juelich, Germany.

RWTH Aachen University, Aachen, Germany.

出版信息

Front Nucl Med. 2023 Sep 14;3:1234853. doi: 10.3389/fnume.2023.1234853. eCollection 2023.

Abstract

OBJECTIVE

The treatment with Lutetium PSMA (Lu-PSMA) in patients with metastatic castration-resistant prostate cancer (mCRPC) has recently been approved by the FDA and EMA. Since treatment success is highly variable between patients, the prediction of treatment response and identification of short- and long-term survivors after treatment could help tailor mCRPC diagnosis and treatment accordingly. The aim of this study is to investigate the value of radiomic parameters extracted from pretreatment Ga-PSMA PET images for the prediction of treatment response.

METHODS

A total of 45 mCRPC patients treated with Lu-PSMA-617 from two university hospital centers were retrospectively reviewed for this study. Radiomic features were extracted from the volumetric segmentations of metastases in the bone. A random forest model was trained and validated to predict treatment response based on age and conventionally used PET parameters, radiomic features and combinations thereof. Further, overall survival was predicted by using the identified radiomic signature and compared to a Cox regression model based on age and PET parameters.

RESULTS

The machine learning model based on a combined radiomic signature of three features and patient age achieved an AUC of 0.82 in 5-fold cross-validation and outperformed models based on age and PET parameters or radiomic features (AUC, 0.75 and 0.76, respectively). A Cox regression model based on this radiomic signature showed the best performance to predict overall survival (C-index, 0.67).

CONCLUSION

Our results demonstrate that a machine learning model to predict response to Lu-PSMA treatment based on a combination of radiomics and patient age outperforms a model based on age and PET parameters. Moreover, the identified radiomic signature based on pretreatment Ga-PSMA PET images might be able to identify patients with an improved outcome and serve as a supportive tool in clinical decision making.

摘要

目的

镥-前列腺特异性膜抗原(Lu-PSMA)治疗转移性去势抵抗性前列腺癌(mCRPC)患者最近已获美国食品药品监督管理局(FDA)和欧洲药品管理局(EMA)批准。由于患者之间的治疗效果差异很大,预测治疗反应以及识别治疗后的短期和长期幸存者有助于相应地调整mCRPC的诊断和治疗。本研究的目的是探讨从治疗前镓-PSMA正电子发射断层扫描(PET)图像中提取的放射组学参数对预测治疗反应的价值。

方法

本研究回顾性分析了来自两个大学医院中心接受Lu-PSMA-617治疗的45例mCRPC患者。从骨转移灶的体积分割中提取放射组学特征。训练并验证了一个随机森林模型,以根据年龄、传统使用的PET参数、放射组学特征及其组合来预测治疗反应。此外,使用识别出的放射组学特征预测总生存期,并与基于年龄和PET参数的Cox回归模型进行比较。

结果

基于三个特征和患者年龄的组合放射组学特征的机器学习模型在五折交叉验证中AUC为0.82,优于基于年龄和PET参数或放射组学特征的模型(AUC分别为0.75和0.76)。基于该放射组学特征的Cox回归模型在预测总生存期方面表现最佳(C指数为0.67)。

结论

我们的结果表明,基于放射组学和患者年龄组合的预测Lu-PSMA治疗反应的机器学习模型优于基于年龄和PET参数的模型。此外,基于治疗前镓-PSMA PET图像识别出的放射组学特征可能能够识别出预后改善的患者,并作为临床决策的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0a3/11440964/6c89db65107b/fnume-03-1234853-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验