Bargagna Filippo, Zigrino Donato, De Santi Lisa Anita, Genovesi Dario, Scipioni Michele, Favilli Brunella, Vergaro Giuseppe, Emdin Michele, Giorgetti Assuero, Positano Vincenzo, Santarelli Maria Filomena
Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy.
Bioengineering Unit, Fondazione Toscana G Monasterio, Via Giuseppe Moruzzi, 56124, Pisa, Italy.
J Imaging Inform Med. 2025 Jun;38(3):1452-1466. doi: 10.1007/s10278-024-01275-8. Epub 2024 Oct 2.
Medical image classification using convolutional neural networks (CNNs) is promising but often requires extensive manual tuning for optimal model definition. Neural architecture search (NAS) automates this process, reducing human intervention significantly. This study applies NAS to [18F]-Florbetaben PET cardiac images for classifying cardiac amyloidosis (CA) sub-types (amyloid light chain (AL) and transthyretin amyloid (ATTR)) and controls. Following data preprocessing and augmentation, an evolutionary cell-based NAS approach with a fixed network macro-structure is employed, automatically deriving cells' micro-structure. The algorithm is executed five times, evaluating 100 mutating architectures per run on an augmented dataset of 4048 images (originally 597), totaling 5000 architectures evaluated. The best network (NAS-Net) achieves 76.95% overall accuracy. K-fold analysis yields mean ± SD percentages of sensitivity, specificity, and accuracy on the test dataset: AL subjects (98.7 ± 2.9, 99.3 ± 1.1, 99.7 ± 0.7), ATTR-CA subjects (93.3 ± 7.8, 78.0 ± 2.9, 70.9 ± 3.7), and controls (35.8 ± 14.6, 77.1 ± 2.0, 96.7 ± 4.4). NAS-derived network performance rivals manually determined networks in the literature while using fewer parameters, validating its automatic approach's efficacy.
使用卷积神经网络(CNN)进行医学图像分类很有前景,但通常需要大量手动调整以实现最优模型定义。神经架构搜索(NAS)使这一过程自动化,显著减少了人工干预。本研究将NAS应用于[18F]-氟贝他班PET心脏图像,以对心脏淀粉样变性(CA)亚型(淀粉样轻链(AL)和转甲状腺素蛋白淀粉样变性(ATTR))及对照进行分类。在数据预处理和增强之后,采用一种具有固定网络宏观结构的基于进化细胞的NAS方法,自动推导细胞的微观结构。该算法运行五次,每次在4048幅图像(原始为597幅)的增强数据集上评估100个变异架构,总共评估5000个架构。最佳网络(NAS-Net)的总体准确率达到76.95%。K折分析得出测试数据集上敏感度、特异度和准确率的均值±标准差百分比:AL受试者(98.7±2.9、99.3±1.1、99.7±0.7),ATTR-CA受试者(93.3±7.8、78.0±2.9、70.9±3.7),以及对照(35.8±14.6、77.1±2.0、96.7±4.4)。NAS衍生的网络性能在使用更少参数的情况下可与文献中手动确定的网络相媲美,验证了其自动方法的有效性。