Yu Hongde, Heine Thomas
Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany.
Helmholtz-Zentrum Dresden-Rossendorf, Centrum for Advanced Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany.
Sci Adv. 2024 Oct 4;10(40):eadq7954. doi: 10.1126/sciadv.adq7954. Epub 2024 Oct 2.
Ferromagnetism and antiferromagnetism require robust long-range magnetic ordering, which typically involves strongly interacting spins localized at transition metal atoms. However, in metal-free systems, the spin orbitals are largely delocalized, and weak coupling between the spins in the lattice hampers long-range ordering. Metal-free magnetism is of fundamental interest to physical sciences, unlocking unprecedented dimensions for strongly correlated materials and biocompatible magnets. Here, we present a strategy to achieve strong coupling between spin centers of planar radical monomers in π-conjugated two-dimensional (2D) polymers and rationally control the orderings. If the π-states in these triangulene-based 2D polymers are half-occupied, then we predict that they are antiferromagnetic Mott-Hubbard insulators. Incorporating a boron or nitrogen heteroatom per monomer results in Stoner ferromagnetism and half-metallicity, with the Fermi level located at spin-polarized Dirac points. An unprecedented antiferromagnetic half-semiconductor is observed in a binary boron-nitrogen-centered 2D polymer. Our findings pioneer Stoner and Mott-Hubbard magnetism emerging in the electronic π-system of crystalline-conjugated 2D polymers.
铁磁性和反铁磁性需要强大的长程磁有序,这通常涉及位于过渡金属原子上的强相互作用自旋。然而,在无金属体系中,自旋轨道在很大程度上是离域的,晶格中自旋之间的弱耦合阻碍了长程有序。无金属磁性是物理科学的基本研究兴趣所在,为强关联材料和生物相容性磁体开辟了前所未有的维度。在此,我们提出一种策略,以实现π共轭二维(2D)聚合物中平面自由基单体的自旋中心之间的强耦合,并合理控制其有序性。如果这些基于三角烯的2D聚合物中的π态被半占据,那么我们预测它们是反铁磁莫特-哈伯德绝缘体。每个单体引入一个硼或氮杂原子会导致斯托纳铁磁性和半金属性,费米能级位于自旋极化的狄拉克点。在以硼-氮为中心的二元2D聚合物中观察到了前所未有的反铁磁半半导体。我们的发现开创了在晶体共轭2D聚合物的电子π体系中出现斯托纳和莫特-哈伯德磁性的先河。