Suppr超能文献

形成不对称凝胶聚合物电解质可提高高压锂金属电池的性能。

Forming Asymmetric Gel Polymer Electrolyte Enhances the Performance of High-Voltage Lithium Metal Batteries.

作者信息

Liu Jingjing, Liu Xiao, Chen Xiaowen, Zhou Jianjun, Xue Jinxin, Zhao Huijuan, Wang Chen, Liu Fengquan, Li Lin

机构信息

College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 16;16(41):55395-55406. doi: 10.1021/acsami.4c11615. Epub 2024 Oct 2.

Abstract

With the rapid evolution of electric vehicle technology, concerns regarding range anxiety and safety have become increasingly pronounced. Battery systems with high specific energy and enhanced security, featuring ternary cathodes paired with lithium (Li) metal anodes, are poised to emerge as next-generation electrochemical devices. However, the asymmetric configuration of the battery structure, characterized by the robust oxidative behavior of the ternary cathodes juxtaposed with the vigorous reductive activity of the Li metal anodes, imposes elevated requisites for the electrolytes. Herein, a well-designed gel polymer electrolyte with asymmetric structure was successfully prepared based on the Ritter reaction of cyanoethyl poly(vinyl alcohol) (PVA-CN) and cationic ring-opening polymerization of s-Trioxane. With the aid of the sieving effect of separator, the asymmetric gel polymer electrolyte has good compatibility with both the high-voltage cathodes and Li anodes. The amide groups generated by PVA-CN after the Ritter reaction and additional cyano groups can tolerate high voltages up to 5.1 V, matching with ternary cathodes without any challenges. The functional amide and cyano groups participate in the formation of the cathode electrolyte interface and stabilize the cathode structure. Meanwhile, the formed ether-based polyformaldehyde electrolyte is beneficial for promoting uniform Li deposition on anode surfaces. Li-Li symmetric cells demonstrate sustained stability over 2000 h of cycling at a current density of 1 mA cm for 1 mAh cm. Furthermore, the capacity retention rate of Li(NiMnCo)O-Li cells with 0.5 C cycling after 300 cycles is 92.2%, demonstrating excellent cycle stability. The electrolyte preparation strategy provides a strategy for the progress of high-performance electrolytes and promotes the rapid development of high-energy-density Li metal batteries.

摘要

随着电动汽车技术的迅速发展,对续航里程焦虑和安全性的担忧日益凸显。具有高比能量和更高安全性的电池系统,其特点是三元阴极与锂(Li)金属阳极配对,有望成为下一代电化学装置。然而,电池结构的不对称配置,其特征在于三元阴极的强烈氧化行为与Li金属阳极的剧烈还原活性并存,对电解质提出了更高的要求。在此,基于氰乙基聚乙烯醇(PVA-CN)的 Ritter 反应和三聚甲醛的阳离子开环聚合,成功制备了一种精心设计的具有不对称结构的凝胶聚合物电解质。借助隔膜的筛分作用,不对称凝胶聚合物电解质与高压阴极和Li阳极均具有良好的兼容性。PVA-CN在Ritter反应后产生的酰胺基团和额外的氰基能够耐受高达5.1 V的高电压,与三元阴极匹配毫无挑战。功能性酰胺和氰基参与阴极电解质界面的形成并稳定阴极结构。同时,形成的醚基聚甲醛电解质有利于促进Li在阳极表面的均匀沉积。Li-Li对称电池在1 mA cm²的电流密度下,对于1 mAh cm²的循环表现出超过2000 h的持续稳定性。此外,Li(NiMnCo)O₂-Li电池在0.5 C循环300次后的容量保持率为92.2%,显示出优异的循环稳定性。该电解质制备策略为高性能电解质的发展提供了一种策略,并推动了高能量密度锂金属电池的快速发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验