Suppr超能文献

通过将氮化钛引入面包状多孔硅碳负极实现高性能安全锂存储的显著性能提升

Dramatic Enhancement Enabled by Introducing TiN into Bread-like Porous Si-Carbon Anodes for High-Performance and Safe Lithium Storage.

作者信息

Li Yangjie, Pang Liang, Li Yang, Li Zhuan, Xiao Peng

机构信息

Powder Metallurgy Research Institute, Central South University, Changsha 410083, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 16;16(41):55372-55382. doi: 10.1021/acsami.4c11332. Epub 2024 Oct 2.

Abstract

Doping modifications and surface coatings are effective methods to slow volume dilatation and boost the conductivity in silicon (Si) anodes for lithium-ion batteries (LIBs). Herein, using low-cost ferrosilicon from industrial production as the energy storage material, a bread-like nitrogen-doped carbon shell-coated porous Si embedded with the titanium nitride (TiN) nanoparticle composite (PSi/TiN@NC) was synthesized by simple ball milling, etching, and self-assembly growth processes. Remarkably, the porous Si structure formed by etching the FeSi phase in ferrosilicon alloys can provide buffer space for significant volume expansion during lithiation. Highly conductive and stable TiN particles can act as stress absorption sites for Si and improve the electronic conductivity of the material. Furthermore, the nitrogen-doped porous carbon shell further helps to sustain the structural stability of the electrode material and boost the migration rate of Li-ions. Benefiting from its unique synergistic effect of components, the PSi/TiN@NC anode exhibits a reversible discharge capacity up to 1324.2 mAh g with a capacity retention rate of 91.5% after 100 cycles at 0.5 A g (vs fourth discharge). Simultaneously, the electrode also delivers good rate performance and a stable discharge capacity of 923.6 mAh g over 300 cycles. This research can offer a potential economic strategy for the development of high-performance and inexpensive Si-based anodes for LIBs.

摘要

掺杂改性和表面涂层是减缓锂离子电池(LIBs)硅(Si)负极体积膨胀并提高其电导率的有效方法。在此,以工业生产的低成本硅铁作为储能材料,通过简单的球磨、蚀刻和自组装生长过程,合成了一种面包状的、嵌入氮化钛(TiN)纳米颗粒复合材料(PSi/TiN@NC)的氮掺杂碳壳包覆多孔硅。值得注意的是,通过蚀刻硅铁合金中的FeSi相形成的多孔硅结构可为锂化过程中的显著体积膨胀提供缓冲空间。高导电性且稳定的TiN颗粒可作为硅的应力吸收位点,并提高材料的电子导电性。此外,氮掺杂多孔碳壳进一步有助于维持电极材料的结构稳定性,并提高锂离子的迁移速率。受益于其独特的组分协同效应,PSi/TiN@NC负极在0.5 A g(相对于第四次放电)下循环100次后,展现出高达1324.2 mAh g的可逆放电容量,容量保持率为91.5%。同时,该电极还具有良好的倍率性能,在300次循环中稳定放电容量为923.6 mAh g。这项研究可为开发高性能且廉价的LIBs硅基负极提供一种潜在的经济策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验