Suppr超能文献

用于锂离子和钠离子电池的双增强核壳壳结构 SbS/Sb@TiO@C 纳米棒复合材料

Double-Enhanced Core-Shell-Shell SbS/Sb@TiO@C Nanorod Composites for Lithium- and Sodium-Ion Batteries.

作者信息

Zhang Yingmeng, Li Shaojun, Liu Luting, Lin Yihan, Jiang Shengyang, Li Yongliang, Ren Xiangzhong, Zhang Peixin, Sun Lingna, Yang Hui Ying

机构信息

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China.

Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 14. doi: 10.1021/acsami.2c05262.

Abstract

For most alloying- and conversion-type anode materials, a huge volume expansion and structure degradation of the electrodes always hinder their applications. In this work, a novel core-shell-shell SbS/Sb@TiO@C nanorod composite has been designed layer by layer, which includes an inner SbS/Sb heterostructure core protected by an oxygen-deficient TiO shell and a conductive carbon shell. It is interesting to observe that, during the carbothermic reduction process, the previous SbS nanorod cores are partially reduced into a metallic Sb phase and the reduced TiO also creates many oxygen vacancies, which can greatly enhance the conductivity of the semiconductor SbS. Thanks to the double effects of the TiO middle shell and carbon outer shell, the unique double-shelled structure design creates an enhanced dual protection, which can better accommodate the volume-expansive deformation and preserve the structural integrity of the active SbS/Sb core. Especially, the TiO middle layer is self-assembled by numerous nanoparticles acting as a nanopillar backbone, which supports between the nanorod core and outer carbon shell to better buffer the volume changes. As a result, the core-shell-shell SbS/Sb@TiO@C anode shows lithium and sodium storage performances superior to those of the pristine SbS and core-shell SbS@TiO electrodes. For lithium-ion batteries, the SbS/Sb@TiO@C nanorod composite achieves an initial discharge/recharge capacity of 1244.9/1005.1 mAh g with an initial Coulombic efficiency of about 80.7%, an enhanced rate capability with a capacity of 593.2 mA h g at 5.0 A g, and prolonged cycling life for 500 cycles with a reversible capacity of 495.8 mAh g at 0.5 A g. For sodium-ion batteries, the nanorodalso exhibits an improved performance with an initial discharge/recharge capacity of 781.4/574.0 mAh g (initial Coulombic efficiency of about 73.46%) and cycling for 400 cycles with a reversible capacity of 422.6 mAh g at 0.8 A g. This research sheds light upon double-shell structure designs with an effective middle shell to enhance the energy storage performance of electrode materials.

摘要

对于大多数合金化型和转化型负极材料而言,电极巨大的体积膨胀和结构退化总是阻碍其应用。在本工作中,一种新颖的核-壳-壳结构SbS/Sb@TiO@C纳米棒复合材料被逐层设计而成,其包括由缺氧TiO壳层保护的内部SbS/Sb异质结构核以及导电碳壳层。有趣的是,在碳热还原过程中,先前的SbS纳米棒核部分被还原成金属Sb相,且还原后的TiO也产生了许多氧空位,这可极大提高半导体SbS的导电性。得益于TiO中间壳层和碳外层的双重作用,独特的双壳结构设计产生了增强的双重保护,能更好地适应体积膨胀变形并保持活性SbS/Sb核的结构完整性。特别地,TiO中间层由众多充当纳米柱骨架的纳米颗粒自组装而成,其支撑在纳米棒核与外部碳壳之间以更好地缓冲体积变化。结果,核-壳-壳结构的SbS/Sb@TiO@C负极展现出优于原始SbS和核-壳结构SbS@TiO电极的锂存储和钠存储性能。对于锂离子电池,SbS/Sb@TiO@C纳米棒复合材料实现了1244.9/1005.1 mAh g的初始放电/充电容量,初始库仑效率约为80.7%,在5.0 A g下具有593.2 mA h g的容量增强倍率性能,以及在0.5 A g下500次循环的长循环寿命和495.8 mAh g的可逆容量。对于钠离子电池,该纳米棒也表现出改善的性能,初始放电/充电容量为781.4/574.0 mAh g(初始库仑效率约为73.46%),并在0.8 A g下循环400次,可逆容量为422.6 mAh g。本研究为具有有效中间壳层的双壳结构设计提供了思路,以提高电极材料的储能性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验