Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Plant Physiol Biochem. 2024 Nov;216:109137. doi: 10.1016/j.plaphy.2024.109137. Epub 2024 Sep 19.
Actin cytoskeleton and reactive oxygen species are principal determinants of root hair polarity and tip growth. Loss of function in RESPIRATORY BURST OXIDASE HOMOLOG C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2), an NADPH oxidase emitting superoxide to the apoplast, and in ACTIN 2, a vegetative actin isovariant, in rhd2-1 and der1-3 mutants, respectively, lead to similar defects in root hair formation and elongation Since early endosome-mediated polar localization of AtRBOHC/RHD2 depends on actin cytoskeleton, comparing the proteome-wide consequences of both mutations might be of eminent interest. Therefore, we employed a differential proteomic analysis of Arabidopsis rhd2-1 and der1-3 mutants. Both mutants exhibited substantial alterations in abundances of stress-related proteins. Notably, plasma membrane (PM)-localized PIP aquaporins showed contrasting abundance patterns in the mutants compared to wild-types. Drought-responsive proteins were mostly downregulated in rhd2-1 but upregulated in der1-3. Proteomic data suggest that opposite to der1-3, altered vesicular transport in rhd2-1 mutant likely contributes to the deregulation of PM-localized proteins, including PIPs. Moreover, lattice light sheet microscopy revealed reduced actin dynamics in rhd2-1 roots, a finding contrasting with previous reports on der1-3 mutant. Phenotypic experiments demonstrated a drought stress susceptibility in rhd2-1 and resistance in der1-3. Thus, mutations in AtRBOHC/RHD2 and ACTIN2 cause similar root hair defects, but they differently affect the actin cytoskeleton and vesicular transport. Reduced actin dynamics in rhd2-1 mutant is accompanied by alteration of vesicular transport proteins abundance, likely leading to altered protein delivery to PM, including aquaporins, thereby significantly affecting drought stress responses.
肌动蛋白细胞骨架和活性氧是根毛极性和尖端生长的主要决定因素。呼吸爆发氧化酶同源物 C/根毛缺陷 2(AtRBOHC/RHD2)和肌动蛋白 2 的功能丧失分别导致超氧化物向质外体释放的 NADPH 氧化酶和营养肌动蛋白同工型,在 rhd2-1 和 der1-3 突变体中,根毛形成和伸长都出现类似缺陷。由于早期内体介导的 AtRBOHC/RHD2 极性定位依赖于肌动蛋白细胞骨架,因此比较这两种突变的蛋白质组学结果可能非常有趣。因此,我们对拟南芥 rhd2-1 和 der1-3 突变体进行了差异蛋白质组学分析。这两种突变体的应激相关蛋白丰度都发生了显著改变。值得注意的是,与野生型相比,质膜(PM)定位的 PIP 水孔蛋白在突变体中表现出相反的丰度模式。干旱响应蛋白在 rhd2-1 中大多下调,而在 der1-3 中上调。蛋白质组学数据表明,与 der1-3 相反,rhd2-1 突变体中囊泡运输的改变可能导致 PM 定位蛋白(包括 PIP)的失调。此外,晶格光片显微镜显示 rhd2-1 根中的肌动蛋白动力学降低,这与之前关于 der1-3 突变体的报告相反。表型实验表明,rhd2-1 对干旱胁迫敏感,而 der1-3 对干旱胁迫有抗性。因此,AtRBOHC/RHD2 和 ACTIN2 的突变导致相似的根毛缺陷,但它们对肌动蛋白细胞骨架和囊泡运输的影响不同。rhd2-1 突变体中肌动蛋白动力学的降低伴随着囊泡运输蛋白丰度的改变,可能导致向 PM 的蛋白质输送改变,包括水通道蛋白,从而显著影响干旱胁迫反应。