Chiappa Alberto Silvio, Tano Pablo, Patel Nisheet, Ingster Abigaïl, Pouget Alexandre, Mathis Alexander
Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Neuro-X Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Department of Fundamental Neuroscience, University of Geneva, 1205 Geneva, Switzerland.
Neuron. 2024 Dec 4;112(23):3969-3983.e5. doi: 10.1016/j.neuron.2024.09.002. Epub 2024 Oct 1.
Efficient musculoskeletal simulators and powerful learning algorithms provide computational tools to tackle the grand challenge of understanding biological motor control. Our winning solution for the inaugural NeurIPS MyoChallenge leverages an approach mirroring human skill learning. Using a novel curriculum learning approach, we trained a recurrent neural network to control a realistic model of the human hand with 39 muscles to rotate two Baoding balls in the palm of the hand. In agreement with data from human subjects, the policy uncovers a small number of kinematic synergies, even though it is not explicitly biased toward low-dimensional solutions. However, selectively inactivating parts of the control signal, we found that more dimensions contribute to the task performance than suggested by traditional synergy analysis. Overall, our work illustrates the emerging possibilities at the interface of musculoskeletal physics engines, reinforcement learning, and neuroscience to advance our understanding of biological motor control.
高效的肌肉骨骼模拟器和强大的学习算法提供了计算工具,以应对理解生物运动控制这一重大挑战。我们在首届神经信息处理系统大会(NeurIPS)肌电挑战赛中的获胜解决方案采用了一种模仿人类技能学习的方法。通过一种新颖的课程学习方法,我们训练了一个循环神经网络来控制一个具有39块肌肉的真实人类手部模型,使其在手掌中旋转两个保定球。与来自人类受试者的数据一致,该策略揭示了少量的运动协同作用,尽管它并没有明确偏向于低维解决方案。然而,通过选择性地灭活部分控制信号,我们发现对任务表现有贡献的维度比传统协同分析所表明的更多。总体而言,我们的工作展示了肌肉骨骼物理引擎、强化学习和神经科学交叉领域中出现的新可能性,以推动我们对生物运动控制的理解。