Suppr超能文献

胸腺肽 α1 逆转溶瘤腺病毒诱导的巨噬细胞 M2 极化,改善抗肿瘤免疫和治疗效果。

Thymosin α1 reverses oncolytic adenovirus-induced M2 polarization of macrophages to improve antitumor immunity and therapeutic efficacy.

机构信息

State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Medical School & School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.

Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan, China.

出版信息

Cell Rep Med. 2024 Oct 15;5(10):101751. doi: 10.1016/j.xcrm.2024.101751. Epub 2024 Oct 1.

Abstract

Although oncolytic adenoviruses are widely studied for their direct oncolytic activity and immunomodulatory role in cancer immunotherapy, the immunosuppressive feedback loop induced by oncolytic adenoviruses remains to be studied. Here, we demonstrate that type V adenovirus (ADV) induces the polarization of tumor-associated macrophages (TAMs) to the M2 phenotype and increases the infiltration of regulatory T cells (Tregs) in the tumor microenvironment (TME). By selectively compensating for these deficiencies, thymosin alpha 1 (Tα1) reprograms "M2-like" TAMs toward an antitumoral phenotype, thereby reprogramming the TME into a state more beneficial for antitumor immunity. Moreover, ADV is constructed by harnessing the merits of all the components for the aforementioned combinatorial therapy. Both exogenously supplied and adenovirus-produced Tα1 orchestrate TAM reprogramming and enhance the antitumor efficacy of ADV via CD8 T cells, showing promising prospects for clinical translation. Our findings provide inspiration for improving oncolytic adenovirus combination therapy and designing oncolytic engineered adenoviruses.

摘要

虽然溶瘤腺病毒因其在癌症免疫治疗中的直接溶瘤活性和免疫调节作用而被广泛研究,但溶瘤腺病毒诱导的免疫抑制反馈回路仍有待研究。在这里,我们证明了五型腺病毒(ADV)可诱导肿瘤相关巨噬细胞(TAMs)向 M2 表型极化,并增加肿瘤微环境(TME)中调节性 T 细胞(Treg)的浸润。通过选择性地补偿这些缺陷,胸腺肽α 1(Tα1)将“M2 样”TAMs 重新编程为抗肿瘤表型,从而将 TME 重塑为更有利于抗肿瘤免疫的状态。此外,ADV 通过利用上述组合疗法的所有成分的优点构建而成。外源性和腺病毒产生的 Tα1 共同协调 TAM 重编程,并通过 CD8 T 细胞增强 ADV 的抗肿瘤疗效,为临床转化提供了广阔的前景。我们的研究结果为改进溶瘤腺病毒联合治疗和设计溶瘤工程腺病毒提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f733/11513825/15dc1d92a591/fx1.jpg

相似文献

3
Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples.
J Immunother Cancer. 2019 Nov 21;7(1):320. doi: 10.1186/s40425-019-0807-6.
4
Combining IL-10 and Oncolytic Adenovirus Demonstrates Enhanced Antitumor Efficacy Through CD8 T Cells.
Front Immunol. 2021 Feb 26;12:615089. doi: 10.3389/fimmu.2021.615089. eCollection 2021.
5
SHISA3 Reprograms Tumor-Associated Macrophages Toward an Antitumoral Phenotype and Enhances Cancer Immunotherapy.
Adv Sci (Weinh). 2024 Sep;11(36):e2403019. doi: 10.1002/advs.202403019. Epub 2024 Jul 25.
6
Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus.
Cancer Res. 2012 May 1;72(9):2327-38. doi: 10.1158/0008-5472.CAN-11-2975. Epub 2012 Mar 6.
7
Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma.
Clin Cancer Res. 2021 Feb 1;27(3):889-902. doi: 10.1158/1078-0432.CCR-20-2400. Epub 2020 Nov 30.
8
CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma.
Mol Ther. 2023 Jan 4;31(1):134-153. doi: 10.1016/j.ymthe.2022.08.021. Epub 2022 Sep 2.
10
The spatial and single-cell analysis reveals remodeled immune microenvironment induced by synthetic oncolytic adenovirus treatment.
Cancer Lett. 2024 Jan 28;581:216485. doi: 10.1016/j.canlet.2023.216485. Epub 2023 Nov 24.

本文引用的文献

1
TGF-β Regulation of T Cells.
Annu Rev Immunol. 2023 Apr 26;41:483-512. doi: 10.1146/annurev-immunol-101921-045939. Epub 2023 Feb 7.
2
The emerging field of oncolytic virus-based cancer immunotherapy.
Trends Cancer. 2023 Feb;9(2):122-139. doi: 10.1016/j.trecan.2022.10.003. Epub 2022 Nov 17.
3
Clinical cancer immunotherapy: Current progress and prospects.
Front Immunol. 2022 Oct 11;13:961805. doi: 10.3389/fimmu.2022.961805. eCollection 2022.
4
The complex role of tumor-infiltrating macrophages.
Nat Immunol. 2022 Aug;23(8):1148-1156. doi: 10.1038/s41590-022-01267-2. Epub 2022 Jul 25.
5
Signaling pathways of chronic kidney diseases, implications for therapeutics.
Signal Transduct Target Ther. 2022 Jun 9;7(1):182. doi: 10.1038/s41392-022-01036-5.
6
Thymosin α-1 Reverses M2 Polarization of Tumor-Associated Macrophages during Efferocytosis.
Cancer Res. 2022 May 16;82(10):1991-2002. doi: 10.1158/0008-5472.CAN-21-4260.
9
Systematic review of combinations of targeted or immunotherapy in advanced solid tumors.
J Immunother Cancer. 2021 Jul;9(7). doi: 10.1136/jitc-2021-002459.
10
Tumor-Associated Macrophages as Multifaceted Regulators of Breast Tumor Growth.
Int J Mol Sci. 2021 Jun 18;22(12):6526. doi: 10.3390/ijms22126526.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验