Suppr超能文献

抑制脂肪甘油三酯脂肪酶(ATGL)可通过损害过氧化物酶体增殖物激活受体α(PPARα)信号通路来减轻小鼠的巨噬细胞活化综合征(MASH),该信号通路有利于亲水性胆汁酸组成。

Inhibition of ATGL alleviates MASH via impaired PPARα signalling that favours hydrophilic bile acid composition in mice.

作者信息

Dixon Emmanuel Dauda, Claudel Thierry, Nardo Alexander Daniel, Riva Alessandra, Fuchs Claudia Daniela, Mlitz Veronika, Busslinger Georg, Scharnagl Hubert, Stojakovic Tatjana, Senéca Joana, Hinteregger Helga, Grabner Gernot F, Kratky Dagmar, Verkade Henkjan, Zimmermann Robert, Haemmerle Guenter, Trauner Michael

机构信息

Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.

Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany.

出版信息

J Hepatol. 2025 Apr;82(4):658-675. doi: 10.1016/j.jhep.2024.09.037. Epub 2024 Sep 30.

Abstract

BACKGROUND & AIMS: Adipose triglyceride lipase (ATGL) is an attractive therapeutic target in insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigated the effects of pharmacological ATGL inhibition on the development of metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis in mice.

METHODS

Streptozotocin-injected male mice were fed a high-fat diet to induce MASH. Mice receiving the ATGL inhibitor atglistatin (ATGLi) were compared to controls using liver histology, lipidomics, metabolomics, 16s rRNA, and RNA sequencing. Human ileal organoids, HepG2 cells, and Caco2 cells treated with the human ATGL inhibitor NG-497, HepG2 ATGL knockdown cells, gel-shift, and luciferase assays were analysed for mechanistic insights. We validated the benefits of ATGLi on steatohepatitis and fibrosis in a low-methionine choline-deficient mouse model.

RESULTS

ATGLi improved serum liver enzymes, hepatic lipid content, and histological liver injury. Mechanistically, ATGLi attenuated PPARα signalling, favouring hydrophilic bile acid (BA) synthesis with increased Cyp7a1, Cyp27a1, Cyp2c70, and reduced Cyp8b1 expression. Additionally, reduced intestinal Cd36 and Abca1, along with increased Abcg5 expression, were consistent with reduced levels of hepatic triacylglycerol species containing polyunsaturated fatty acids, like linoleic acid, as well as reduced cholesterol levels in the liver and plasma. Similar changes in gene expression associated with PPARα signalling and intestinal lipid transport were observed in ileal organoids treated with NG-497. Furthermore, HepG2 ATGL knockdown cells revealed reduced expression of PPARα target genes and upregulation of genes involved in hydrophilic BA synthesis, consistent with reduced PPARα binding and luciferase activity in the presence of the ATGL inhibitors.

CONCLUSIONS

Inhibition of ATGL attenuates PPARα signalling, translating into hydrophilic BA composition, interfering with dietary lipid absorption, and improving metabolic disturbances. Validation with NG-497 opens a new therapeutic perspective for MASLD.

IMPACT AND IMPLICATIONS

Despite the recent approval of drugs novel mechanistic insights and pathophysiology-oriented therapeutic options for MASLD (metabolic dysfunction-associated steatotic liver disease) are still urgently needed. Herein, we show that pharmacological inhibition of ATGL, the key enzyme in lipid hydrolysis, using atglistatin (ATGLi), improves MASH (metabolic dysfunction-associated steatohepatitis), fibrosis, and key features of metabolic dysfunction in mouse models of MASH and liver fibrosis. Mechanistically, we demonstrated that attenuation of PPARα signalling in the liver and gut favours hydrophilic bile acid composition, ultimately interfering with dietary lipid absorption. One of the drawbacks of ATGLi is its lack of efficacy against human ATGL, thus limiting its clinical applicability. Against this backdrop, we could show that ATGL inhibition using the human inhibitor NG-497 in human primary ileum-derived organoids, Caco2 cells, and HepG2 cells translated into therapeutic mechanisms similar to ATGLi. Collectively, these findings reveal a possible new avenue for MASLD treatment.

摘要

背景与目的

脂肪甘油三酯脂肪酶(ATGL)是胰岛素抵抗和代谢功能障碍相关脂肪性肝病(MASLD)中一个有吸引力的治疗靶点。本研究调查了药物性抑制ATGL对小鼠代谢功能障碍相关脂肪性肝炎(MASH)和肝纤维化发展的影响。

方法

给注射链脲佐菌素的雄性小鼠喂食高脂饮食以诱导MASH。使用肝脏组织学、脂质组学、代谢组学、16s rRNA和RNA测序,将接受ATGL抑制剂阿特他汀(ATGLi)的小鼠与对照组进行比较。对用人类ATGL抑制剂NG - 497处理的人回肠类器官、HepG2细胞和Caco2细胞、HepG2 ATGL基因敲低细胞、凝胶迁移和荧光素酶测定进行分析,以深入了解其机制。我们在低蛋氨酸胆碱缺乏小鼠模型中验证了ATGLi对脂肪性肝炎和肝纤维化的益处。

结果

ATGLi改善了血清肝酶、肝脏脂质含量和肝脏组织学损伤。从机制上讲,ATGLi减弱了PPARα信号传导,有利于亲水性胆汁酸(BA)合成,Cyp7a1、Cyp27a1、Cyp2c70表达增加,Cyp8b1表达降低。此外,肠道Cd36和Abca1减少,以及Abcg5表达增加,与含有多不饱和脂肪酸(如亚油酸)的肝脏三酰甘油种类水平降低以及肝脏和血浆中胆固醇水平降低一致。在用NG - 497处理的回肠类器官中观察到与PPARα信号传导和肠道脂质转运相关的基因表达有类似变化。此外,HepG2 ATGL基因敲低细胞显示PPARα靶基因表达降低,参与亲水性BA合成的基因上调,这与在ATGL抑制剂存在下PPARα结合和荧光素酶活性降低一致。

结论

抑制ATGL可减弱PPARα信号传导,转化为亲水性BA组成,干扰膳食脂质吸收,并改善代谢紊乱。用NG - 497进行的验证为MASLD开辟了新的治疗前景。

影响与意义

尽管最近有药物获批,但对于MASLD(代谢功能障碍相关脂肪性肝病),仍然迫切需要新的机制性见解和以病理生理学为导向的治疗选择。在此,我们表明,使用阿特他汀(ATGLi)对脂质水解关键酶ATGL进行药物性抑制,可改善MASH(代谢功能障碍相关脂肪性肝炎)、肝纤维化以及MASH和肝纤维化小鼠模型中代谢功能障碍的关键特征。从机制上讲,我们证明肝脏和肠道中PPARα信号传导的减弱有利于亲水性胆汁酸组成,最终干扰膳食脂质吸收。ATGLi的一个缺点是对人类ATGL缺乏疗效,从而限制了其临床适用性。在此背景下,我们可以证明,在人原发性回肠来源的类器官、Caco2细胞和HepG2细胞中使用人类抑制剂NG - 497抑制ATGL可转化为与ATGLi类似的治疗机制。总体而言,这些发现揭示了一条可能的MASLD治疗新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验