Suppr超能文献

DeepAIP:基于上下文自注意力网络的基于预训练蛋白质语言模型特征的抗炎肽预测的深度学习方法。

DeepAIP: Deep learning for anti-inflammatory peptide prediction using pre-trained protein language model features based on contextual self-attention network.

机构信息

School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China; The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.

School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China.

出版信息

Int J Biol Macromol. 2024 Nov;280(Pt 4):136172. doi: 10.1016/j.ijbiomac.2024.136172. Epub 2024 Sep 30.

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and other immunosuppressants are commonly used medications for treating inflammation. However, these drugs often come with numerous side effects. Therefore, finding more effective methods for inflammation treatment has become more necessary. The study of anti-inflammatory peptides can effectively address these issues. In this work, we propose a contextual self-attention deep learning model, coupled with features extracted from a pre-trained protein language model, to predict Anti-inflammatory Peptides (AIP). The contextual self-attention module can effectively enhance and learn the features extracted from the pre-trained protein language model, resulting in high accuracy to predict AIP. Additionally, we compared the performance of features extracted from popular pre-trained protein language models available in the market. Finally, Prot-T5 features demonstrated the best comprehensive performance as the input for our deep learning model named DeepAIP. Compared with existing methods on benchmark test dataset, DeepAIP gets higher Matthews Correlation Coefficient and Accuracy score than the second-best method by 16.35 % and 6.91 %, respectively. Performance comparison analysis was conducted using a dataset of 17 novel anti-inflammatory peptide sequences. DeepAIP demonstrates outstanding accuracy, correctly identifying all 17 peptide types as AIP and predicting values closer to the true ones. Data and code are available at https://github.com/YangQingGuoCCZU/DeepAIP.

摘要

非甾体抗炎药 (NSAIDs)、糖皮质激素和其他免疫抑制剂是治疗炎症的常用药物。然而,这些药物通常伴随着许多副作用。因此,寻找更有效的炎症治疗方法变得更加必要。抗炎肽的研究可以有效地解决这些问题。在这项工作中,我们提出了一种基于上下文自注意力的深度学习模型,结合从预先训练好的蛋白质语言模型中提取的特征,来预测抗炎肽 (AIP)。上下文自注意力模块可以有效地增强和学习从预先训练好的蛋白质语言模型中提取的特征,从而实现 AIP 的高精度预测。此外,我们比较了市场上流行的预训练蛋白质语言模型所提取的特征的性能。最后,Prot-T5 特征作为我们的深度学习模型 DeepAIP 的输入,表现出了最好的综合性能。与基准测试数据集上的现有方法相比,DeepAIP 在 Matthews 相关系数和准确性得分方面比排名第二的方法分别高出 16.35%和 6.91%。使用 17 个新型抗炎肽序列的数据集进行了性能比较分析。DeepAIP 表现出了出色的准确性,正确识别了所有 17 种肽类型为 AIP,并预测的值更接近真实值。数据和代码可在 https://github.com/YangQingGuoCCZU/DeepAIP 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验