Kaur Simrandeep, Chanda Tanima, Amin Kazi Rafsanjani, Sahani Divya, Watanabe Kenji, Taniguchi Takashi, Ghorai Unmesh, Gefen Yuval, Sreejith G J, Bid Aveek
Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
Nat Commun. 2024 Oct 2;15(1):8535. doi: 10.1038/s41467-024-52927-w.
Fractional quantum Hall (FQH) phases emerge due to strong electronic interactions and are characterized by anyonic quasiparticles, each distinguished by unique topological parameters, fractional charge, and statistics. In contrast, the integer quantum Hall (IQH) effects can be understood from the band topology of non-interacting electrons. We report a surprising super-universality of the critical behavior across all FQH and IQH transitions. Contrary to the anticipated state-dependent critical exponents, our findings reveal the same critical scaling exponent κ = 0.41 ± 0.02 and localization length exponent γ = 2.4 ± 0.2 for fractional and integer quantum Hall transitions. From these, we extract the value of the dynamical exponent z ≈ 1. We have achieved this in ultra-high mobility trilayer graphene devices with a metallic screening layer close to the conduction channels. The observation of these global critical exponents across various quantum Hall phase transitions was masked in previous studies by significant sample-to-sample variation in the measured values of κ in conventional semiconductor heterostructures, where long-range correlated disorder dominates. We show that the robust scaling exponents are valid in the limit of short-range disorder correlations.
分数量子霍尔(FQH)相源于强电子相互作用,其特征是任意子准粒子,每个准粒子都由独特的拓扑参数、分数电荷和统计特性来区分。相比之下,整数量子霍尔(IQH)效应可以从非相互作用电子的能带拓扑结构来理解。我们报告了在所有FQH和IQH转变中临界行为的惊人超普适性。与预期的依赖于状态的临界指数相反,我们的研究结果表明,对于分数量子霍尔和整数量子霍尔转变,临界标度指数κ = 0.41 ± 0.02以及局域长度指数γ = 2.4 ± 0.2是相同的。由此,我们得出动力学指数z ≈ 1的值。我们是在具有靠近传导通道的金属屏蔽层的超高迁移率三层石墨烯器件中实现这一结果的。在先前的研究中,由于传统半导体异质结构中κ测量值存在显著的样品间差异(其中长程相关无序起主导作用),各种量子霍尔相变中这些全局临界指数的观测被掩盖了。我们表明,在短程无序关联的极限情况下,稳健的标度指数是有效的。