Faisal Ayad A H, Mokif Layla Abdulkareem, Hassan Waqed H, AlZubaidi Radhi, Al Marri Saeed, Hashim Khalid, Khan Mohammad Amir, Al-Sareji Osamah J
Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, 10001, Iraq.
Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq.
Sci Rep. 2024 Oct 2;14(1):22907. doi: 10.1038/s41598-024-73295-x.
The current study investigates removing tetracycline from water using batch, column, and tank experiments with statistical modelling using ANN for continuous tests. An artificial neural network (ANN) using the Levenberg-Marquardt back-propagation (LMA) training algorithm is constructed to compare the effectiveness of Tetracycline removal from aqueous solution using the sorption technique with prepared adsorbent. Several characterization analyses XRD, FT-IR, and SEM are employed for prepared Brownmillerite (CaFeO)-Na alginate beads. The operating conditions of batch tests involved, contact time (0.1-3 h), initial of tetracycline (C) of (100-250 mg/L), pH (3-12), agitation speed (50-250) rpm and dosage of adsorbent (0.2-1.2 g/50 mL). The outcomes of experiments have demonstrated that the optimum conditions for the batch test to achieve the maximum adsorbent capacity (q =7.845 mg/g) are achieved at pH 7, contact time 1.5 h, adsorbent dose 1.2 g/50 mL, agitation speed of 200 rpm, and initial concentration of TC 100 mg/L. Minimum mean square error (MSE) values of 7.09E-04 for 30 hidden neurons and 0.0029 for 59 hidden neurons in the 1D and 2D systems are accomplished, respectively. The artificial neural network model has exhibited excellent performance with correlation coefficients exceeding 0.980 for the operating variables, demonstrating its accuracy and effectiveness in predicting the experimental outcomes. According to sensitivity analysis, the influential parameter in the column test (1D) is the flow rate (mL/min), with a relative importance of 32.769%. However, in the tank test (2D), time (day) is signified as an influential parameter with a relative importance of 31.207%.
本研究通过批次实验、柱实验和罐体实验研究从水中去除四环素,并使用人工神经网络(ANN)进行统计建模以进行连续测试。构建了使用Levenberg-Marquardt反向传播(LMA)训练算法的人工神经网络(ANN),以比较使用制备的吸附剂通过吸附技术从水溶液中去除四环素的效果。对制备的钙铁石(CaFeO)-海藻酸钠珠进行了几种表征分析,包括XRD、FT-IR和SEM。批次测试的操作条件包括接触时间(0.1 - 3小时)、四环素初始浓度(C)(100 - 250mg/L)、pH值(3 - 12)、搅拌速度(50 - 250)rpm以及吸附剂用量(0.2 - 1.2g/50mL)。实验结果表明,批次测试达到最大吸附容量(q = 7.845mg/g)的最佳条件是pH值为7、接触时间1.5小时、吸附剂用量1.2g/50mL、搅拌速度200rpm以及四环素初始浓度100mg/L。在1D和2D系统中,分别实现了30个隐藏神经元的最小均方误差(MSE)值为7.09E - 04和59个隐藏神经元的最小均方误差值为0.0029。人工神经网络模型表现出优异的性能,操作变量的相关系数超过0.980,证明了其在预测实验结果方面的准确性和有效性。根据敏感性分析,柱实验(1D)中的影响参数是流速(mL/min),相对重要性为32.769%。然而,在罐体实验(2D)中,时间(天)被视为影响参数,相对重要性为31.207%。