Suppr超能文献

利用电子健康记录识别的高血压患者中貌似难治性高血压的预测因素

Predictive Factors of Apparent Treatment Resistant Hypertension Among Patients With Hypertension Identified Using Electronic Health Records.

作者信息

Lin Shanshan, Hsu Yea-Jen, Kim Ji Soo, Jackson John W, Segal Jodi B

机构信息

Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

J Gen Intern Med. 2025 May;40(6):1265-1274. doi: 10.1007/s11606-024-09068-z. Epub 2024 Oct 2.

Abstract

BACKGROUND

Early identification of a patient with resistant hypertension (RH) enables quickly intensified treatment, short-interval follow-up, or perhaps case management to bring his or her blood pressure under control and reduce the risk of complications.

OBJECTIVE

To identify predictors of RH among individuals with newly diagnosed hypertension (HTN), while comparing different prediction models and techniques for managing missing covariates using electronic health records data.

DESIGN

Risk prediction study in a retrospective cohort.

PARTICIPANTS

Adult patients with incident HTN treated in any of the primary care clinics of one health system between April 2013 and December 2016.

MAIN MEASURES

Predicted risk of RH at the time of HTN identification and candidate predictors for variable selection in future model development.

KEY RESULTS

Among 26,953 individuals with incident HTN, 613 (2.3%) met criteria for RH after 4.7 months (interquartile range, 1.2-11.3). Variables selected by the least absolute shrinkage and selection operator (LASSO), included baseline systolic blood pressure (SBP) and its missing indicator (a dummy variable created if baseline SBP is absent), use of antihypertensive medication at the time of cohort entry, body mass index, and atherosclerosis risk. The random forest technique achieved the highest area under the curve (AUC) of 0.893 (95% CI, 0.881-0.904) and the best calibration with a calibration slope of 1.01. Complete case analysis is not a valuable option (AUC = 0.625).

CONCLUSIONS

Machine learning techniques and traditional logistic regression exhibited comparable levels of predictive performance after handling the missingness. We suggest that the variables identified by this study may be good candidates for clinical prediction models to alert clinicians to the need for short-interval follow up and more intensive early therapy for HTN.

摘要

背景

早期识别难治性高血压(RH)患者有助于迅速加强治疗、缩短随访间隔,或者通过病例管理来控制其血压并降低并发症风险。

目的

在新诊断高血压(HTN)患者中识别RH的预测因素,同时比较使用电子健康记录数据处理缺失协变量的不同预测模型和技术。

设计

一项回顾性队列风险预测研究。

参与者

2013年4月至2016年12月期间在一个医疗系统的任何初级保健诊所接受治疗的成年新发HTN患者。

主要测量指标

HTN识别时RH的预测风险以及未来模型开发中变量选择的候选预测因素。

关键结果

在26953例新发HTN患者中,613例(2.3%)在4.7个月后(四分位间距,1.2 - 11.3)符合RH标准。通过最小绝对收缩和选择算子(LASSO)选择的变量包括基线收缩压(SBP)及其缺失指标(如果基线SBP缺失则创建的虚拟变量)、队列入组时使用的抗高血压药物、体重指数和动脉粥样硬化风险。随机森林技术的曲线下面积(AUC)最高,为0.893(95%CI,0.881 - 0.904),校准斜率为1.01时校准效果最佳。完全病例分析不是一个有价值的选择(AUC = 0.625)。

结论

处理缺失值后,机器学习技术和传统逻辑回归表现出相当的预测性能水平。我们建议,本研究确定的变量可能是临床预测模型的良好候选因素,可提醒临床医生对HTN患者进行短间隔随访和更强化的早期治疗。

相似文献

1
3
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
6
Antihypertensive withdrawal for the prevention of cognitive decline.
Cochrane Database Syst Rev. 2016 Nov 1;11(11):CD011971. doi: 10.1002/14651858.CD011971.pub2.
7
Systematic review on urine albumin testing for early detection of diabetic complications.
Health Technol Assess. 2005 Aug;9(30):iii-vi, xiii-163. doi: 10.3310/hta9300.
8
Pharmacotherapy for hypertension in adults aged 18 to 59 years.
Cochrane Database Syst Rev. 2017 Aug 16;8(8):CD008276. doi: 10.1002/14651858.CD008276.pub2.
9
Eplerenone for hypertension.
Cochrane Database Syst Rev. 2017 Feb 28;2(2):CD008996. doi: 10.1002/14651858.CD008996.pub2.
10
Altered dietary salt intake for preventing diabetic kidney disease and its progression.
Cochrane Database Syst Rev. 2023 Jan 16;1(1):CD006763. doi: 10.1002/14651858.CD006763.pub3.

本文引用的文献

2
Using measures of race to make clinical predictions: Decision making, patient health, and fairness.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2303370120. doi: 10.1073/pnas.2303370120. Epub 2023 Aug 22.
3
Use of race in clinical algorithms.
Sci Adv. 2023 May 26;9(21):eadd2704. doi: 10.1126/sciadv.add2704.
4
Patient-centered appraisal of race-free clinical risk assessment.
Health Econ. 2022 Oct;31(10):2109-2114. doi: 10.1002/hec.4569. Epub 2022 Jul 5.
5
Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review.
J Clin Epidemiol. 2022 Feb;142:218-229. doi: 10.1016/j.jclinepi.2021.11.023. Epub 2021 Nov 16.
6
Multiple imputation with missing data indicators.
Stat Methods Med Res. 2021 Dec;30(12):2685-2700. doi: 10.1177/09622802211047346. Epub 2021 Oct 13.
8
Apparent treatment-resistant hypertension among ambulatory hypertensive patients: a cross-sectional study from 13 general hospitals.
Korean J Intern Med. 2021 Jul;36(4):888-897. doi: 10.3904/kjim.2019.361. Epub 2021 Jun 7.
9
Race and Genetic Ancestry in Medicine - A Time for Reckoning with Racism.
N Engl J Med. 2021 Feb 4;384(5):474-480. doi: 10.1056/NEJMms2029562. Epub 2021 Jan 6.
10
Informative missingness in electronic health record systems: the curse of knowing.
Diagn Progn Res. 2020 Jul 2;4:8. doi: 10.1186/s41512-020-00077-0. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验