Lin Shanshan, Hsu Yea-Jen, Kim Ji Soo, Jackson John W, Segal Jodi B
Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
J Gen Intern Med. 2025 May;40(6):1265-1274. doi: 10.1007/s11606-024-09068-z. Epub 2024 Oct 2.
Early identification of a patient with resistant hypertension (RH) enables quickly intensified treatment, short-interval follow-up, or perhaps case management to bring his or her blood pressure under control and reduce the risk of complications.
To identify predictors of RH among individuals with newly diagnosed hypertension (HTN), while comparing different prediction models and techniques for managing missing covariates using electronic health records data.
Risk prediction study in a retrospective cohort.
Adult patients with incident HTN treated in any of the primary care clinics of one health system between April 2013 and December 2016.
Predicted risk of RH at the time of HTN identification and candidate predictors for variable selection in future model development.
Among 26,953 individuals with incident HTN, 613 (2.3%) met criteria for RH after 4.7 months (interquartile range, 1.2-11.3). Variables selected by the least absolute shrinkage and selection operator (LASSO), included baseline systolic blood pressure (SBP) and its missing indicator (a dummy variable created if baseline SBP is absent), use of antihypertensive medication at the time of cohort entry, body mass index, and atherosclerosis risk. The random forest technique achieved the highest area under the curve (AUC) of 0.893 (95% CI, 0.881-0.904) and the best calibration with a calibration slope of 1.01. Complete case analysis is not a valuable option (AUC = 0.625).
Machine learning techniques and traditional logistic regression exhibited comparable levels of predictive performance after handling the missingness. We suggest that the variables identified by this study may be good candidates for clinical prediction models to alert clinicians to the need for short-interval follow up and more intensive early therapy for HTN.
早期识别难治性高血压(RH)患者有助于迅速加强治疗、缩短随访间隔,或者通过病例管理来控制其血压并降低并发症风险。
在新诊断高血压(HTN)患者中识别RH的预测因素,同时比较使用电子健康记录数据处理缺失协变量的不同预测模型和技术。
一项回顾性队列风险预测研究。
2013年4月至2016年12月期间在一个医疗系统的任何初级保健诊所接受治疗的成年新发HTN患者。
HTN识别时RH的预测风险以及未来模型开发中变量选择的候选预测因素。
在26953例新发HTN患者中,613例(2.3%)在4.7个月后(四分位间距,1.2 - 11.3)符合RH标准。通过最小绝对收缩和选择算子(LASSO)选择的变量包括基线收缩压(SBP)及其缺失指标(如果基线SBP缺失则创建的虚拟变量)、队列入组时使用的抗高血压药物、体重指数和动脉粥样硬化风险。随机森林技术的曲线下面积(AUC)最高,为0.893(95%CI,0.881 - 0.904),校准斜率为1.01时校准效果最佳。完全病例分析不是一个有价值的选择(AUC = 0.625)。
处理缺失值后,机器学习技术和传统逻辑回归表现出相当的预测性能水平。我们建议,本研究确定的变量可能是临床预测模型的良好候选因素,可提醒临床医生对HTN患者进行短间隔随访和更强化的早期治疗。