Yu Xingmiao, Xiang Jianfei, Shi Qitao, Li Luwen, Wang Jiaqi, Liu Xiangqi, Zhang Cheng, Wang Zhipeng, Zhang Junjin, Hu Huimin, Bachmatiuk Alicja, Trzebicka Barbara, Chen Jin, Guo Tianxiao, Shen Yanbin, Choi Jinho, Huang Cheng, Rümmeli Mark H
Soochow Institute for Energy and Materials Innovation, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, P. R. China.
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China.
Small. 2024 Dec;20(50):e2406309. doi: 10.1002/smll.202406309. Epub 2024 Oct 2.
Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (≈300 mAh g at 10 A g) and a prolonged fast-charging lifespan (862.82 mAh g at 5 A g after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs.
石墨碳材料因其稳定性和高导电性而被广泛应用于锂离子电池(LIBs)。然而,石墨阳极的比容量较低且会随时间退化,限制了它们的应用。为满足先进的储能需求,需要高性能的石墨碳材料。通过硼和氮掺杂以及引入三维结构(如碳纳米笼(CNCs))可以提高碳材料的电化学性能。在本研究中,通过化学气相沉积(CVD)将铝(Al)引入到CNC晶格中。CNCs的中空结构使得电解质能够快速渗透。密度泛函理论(DFT)计算表明,Al掺杂降低了Li的嵌入能。铝 - 硼(B) - 氮(N)掺杂的CNC(AlBN - CNC)阳极表现出超高倍率容量(在10 A g时约为300 mAh g)和延长的快速充电寿命(在1000次循环后,5 A g时为862.82 mAh g),超过了N掺杂或BN掺杂的CNCs。Al掺杂改善了充电动力学和结构稳定性。令人惊讶的是,由于石墨层间距增大,AlBN - CNCs在循环时容量增加。石墨纳米结构的表征证实,Al掺杂有效地调整并增强了它们的电化学性能,为下一代LIBs的高容量、快速充电石墨碳阳极材料提供了一种新策略。