Suppr超能文献

基于深度学习的快速反转恢复采样技术加速二维径向 Look-Locker T1 mapping。

Accelerated 2D radial Look-Locker T1 mapping using a deep learning-based rapid inversion recovery sampling technique.

机构信息

Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona, USA.

Siemens Medical Solutions USA, Tucson, Arizona, USA.

出版信息

NMR Biomed. 2024 Dec;37(12):e5266. doi: 10.1002/nbm.5266. Epub 2024 Oct 2.

Abstract

Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice-selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)-based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5-5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.

摘要

基于快速 T1 恢复曲线(T1RC)采样、片选反转、优化的切片交错和基于卷积神经网络(CNN)的 T1 估计,开发了一种用于高效腹部覆盖的 T1 映射框架。通过比较 T1RC 从 0.63 到 2.0 秒的 T1 估计值与 T1RC = 2.5-5 秒的参考 T1 值,评估了减少 T1RC 采样的效果。通过比较腹部器官的 T1 变化来评估切片交错方法。通过在成像会话中对测试对象进行采集来证明所提出框架的可重复性。基于回顾性缩短 T1RC 的体内数据分析表明,使用 CNN 框架,T1RC = 0.84 秒可获得 T1 估计值,而平均 T1(p > 0.05)或 T1 变异性(p > 0.48)无显著变化。使用 T1RC = 0.84 秒、优化的切片交错方案和 CNN 框架前瞻性采集数据,在 20 秒的 BHP 内可实现 21 个切片。跨腹部器官的分析产生的 T1 值与参考值相差 2%以内。重复性实验产生的 Pearson 相关系数、重复性系数和变异系数分别为 0.99、2.5%和 0.12。所提出的 T1 映射框架在单个 BHP 内提供了完整的腹部覆盖。

相似文献

10
Whole pancreas water T mapping at 3 Tesla.3特斯拉下的全胰腺水T成像
MAGMA. 2025 Apr;38(2):271-283. doi: 10.1007/s10334-025-01224-8. Epub 2025 Mar 6.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验