Athle Robin, Hill Megan O, Irish Austin, Chen Huaiyu, Timm Rainer, Kristensson Elias, Wallentin Jesper, Borg Mattias
Electrical and Information Technology, Lund University, Box 118, Lund 22 100, Sweden.
NanoLund, Lund University, Box 118, Lund 22 100, Sweden.
ACS Appl Mater Interfaces. 2024 Oct 3;16(41):55684-92. doi: 10.1021/acsami.4c10002.
Nonvolatile memory devices based on ferroelectric HfZrO (HZO) show great promise for back-end integrable storage and for neuromorphic accelerators, but their adoption is held back by the inability to scale down the HZO thickness without violating the strict thermal restrictions of the Si CMOS back end of line. In this work, we overcome this challenge and demonstrate the use of nanosecond pulsed laser annealing (NLA) to locally crystallize areas of an ultrathin (3.6 nm) HZO film into the ferroelectric orthorhombic phase. Meanwhile, the heat induced by the pulsed laser is confined to the layers above the Si, allowing for back-end compatible integration. We use a combination of electrical characterization, nanofocused scanning X-ray diffraction (nano-XRD), and synchrotron X-ray photoelectron spectroscopy (SXPS) to gain a comprehensive view of the change in material and interface properties by systematically varying both laser energy and the number of laser pulses on the same sample. We find that NLA can provide remanent polarization up to 2= 11.6 μC/cm in 3.6 nm HZO, albeit with a significant wake-up effect. The improved TiN/HZO interface observed by XPS explains why device endurance goes beyond 10 cycles, whereas an identical film processed by rapid thermal processing (RTP) breaks already after 10 cycles. All in all, NLA provides a promising approach to scale down the ferroelectric oxide thickness for emerging HZO ferroelectric devices, which is key for their integration in scaled process nodes.
基于铁电铪锆氧化物(HZO)的非易失性存储器件在后端可集成存储和神经形态加速器方面展现出巨大潜力,但其应用因无法在不违反硅互补金属氧化物半导体(Si CMOS)后端线路严格热限制的情况下减小HZO厚度而受阻。在这项工作中,我们克服了这一挑战,并展示了使用纳秒脉冲激光退火(NLA)将超薄(3.6纳米)HZO薄膜的区域局部结晶为铁电正交相。同时,脉冲激光产生的热量被限制在硅上方的层中,从而实现与后端兼容的集成。我们结合电学表征、纳米聚焦扫描X射线衍射(nano-XRD)和同步加速器X射线光电子能谱(SXPS),通过系统地改变同一样品上的激光能量和激光脉冲数量,全面了解材料和界面特性的变化。我们发现,NLA可以在3.6纳米的HZO中提供高达2 = 11.6 μC/cm²的剩余极化,尽管存在显著的唤醒效应。XPS观察到的改进的氮化钛/ HZO界面解释了为什么器件耐久性超过10个循环,而通过快速热处理(RTP)处理的相同薄膜在10个循环后就已经损坏。总而言之,NLA为缩小新兴HZO铁电器件的铁电氧化物厚度提供了一种有前景的方法,这是它们集成到缩小工艺节点中的关键。