Suppr超能文献

通过前沿分子轨道工程增强二维金属有机框架中的磁有序性。

Enhancing Magnetic Ordering in Two-Dimensional Metal-Organic Frameworks via Frontier Molecular Orbital Engineering.

作者信息

Lv Haifeng, Wu Daoxiong, Cui Xuefeng, Wu Xiaojun, Yang Jinlong

机构信息

Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.

School of Marine Science and Engineering, Hainan University, Haikou, Hainan 570228, China.

出版信息

J Phys Chem Lett. 2024 Oct 3;15(39):9960-9967. doi: 10.1021/acs.jpclett.4c02136. Epub 2024 Sep 23.

Abstract

Two-dimensional (2D) metal-organic frameworks (MOFs) have promise for use in lightweight permanent magnets in contrast to inorganic solid- or molecule-based magnets, but the realization of 2D MOF magnets with a high ordering temperature is limited by the typically weak spin exchange interactions. Here, we have proposed a frontier molecular orbital engineering strategy for modulating magnetism in 2D MOFs. It shows that the magnetic ground state can be mediated by two intra-atomic spin exchange pathways in organic ligands, akin to the Bloch and Heisenberg models, depending on the shape of the frontier orbitals of the organic ligands. By engineering the shape of the lowest unoccupied molecular orbital (LUMO) via chemical hydrogenation, we achieved a nearly 11-fold increase in the ordering temperature. In particular, a quantitative analysis shows that the ordering temperature increases linearly with the orbital delocalization index of the ligands' LUMO. This work suggests a general frontier orbital engineering approach for modulating the spin exchange interaction in 2D MOF magnets.

摘要

与基于无机固体或分子的磁体相比,二维(2D)金属有机框架(MOF)有望用于轻质永磁体,但具有高有序温度的二维MOF磁体的实现受到典型的弱自旋交换相互作用的限制。在此,我们提出了一种前沿分子轨道工程策略来调节二维MOF中的磁性。结果表明,磁基态可由有机配体中的两条原子内自旋交换途径介导,类似于布洛赫和海森堡模型,这取决于有机配体前沿轨道的形状。通过化学氢化工程设计最低未占据分子轨道(LUMO)的形状,我们实现了有序温度近11倍的增加。特别是,定量分析表明,有序温度随配体LUMO的轨道离域指数线性增加。这项工作提出了一种通用的前沿轨道工程方法来调节二维MOF磁体中的自旋交换相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验