Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO.
Department of Developmental Biology (J.S., A.H., L.S.-K.), Washington University School of Medicine, St. Louis, MO.
Arterioscler Thromb Vasc Biol. 2024 Dec;44(12):2577-2595. doi: 10.1161/ATVBAHA.124.321434. Epub 2024 Oct 3.
Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces; yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor CXCR3 (CXC motif chemokine receptor 3) and one of its ligands, CXCL11 (CXC motif chemokine ligand 11)-that delimits EC angiogenic potential and promotes pericyte recruitment to ECs during development.
We investigated the role of CXCR3 on vascular development using both 2- and 3-dimensional in vitro assays, to study EC-pericyte interactions and EC behavioral responses to blood flow. Additionally, genetic mutants and pharmacological modulators were used in zebrafish in vivo to study the impacts of CXCR3 loss and gain of function on vascular development.
In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with ECs and expansion of the vasculature in zebrafish treated with the Cxcr3 inhibitor AMG487 or in homozygous triple mutants. We also demonstrate that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared with their control counterparts.
Our results suggest that CXCR3 signaling in ECs helps promote vascular stabilization events during development by preventing EC overgrowth and promoting pericyte recruitment.
已知内皮细胞 (EC) - 周细胞相互作用会响应血流动力学而重塑;然而,对于这些事件背后的信号通路,我们缺乏机制上的理解。在这里,我们已经确定了一个新的信号网络,该网络受 EC 中的血流调节 - 趋化因子受体 CXCR3(CXC 基序趋化因子受体 3)及其配体之一 CXCL11(CXC 基序趋化因子配体 11)- 它限制了 EC 血管生成潜能,并在发育过程中促进周细胞向 EC 的募集。
我们使用 2 维和 3 维体外测定法研究了 CXCR3 在血管发育中的作用,以研究 EC-周细胞相互作用和 EC 对血流的行为反应。此外,还在斑马鱼体内使用遗传突变体和药理学调节剂来研究 CXCR3 缺失和功能获得对血管发育的影响。
体外模拟 EC-周细胞相互作用表明,抑制 EC 特异性 CXCR3 信号会导致周细胞与 EC 管的关联丧失。在体内,特别是在颅血管中,我们看到与 EC 关联的周细胞缺失以及在用 Cxcr3 抑制剂 AMG487 处理的斑马鱼或纯合三重突变体中血管扩张。我们还证明,与对照相比,CXCR3 缺陷型 EC 更细长,移动更慢,并且 EC-EC 连接受损。
我们的结果表明,EC 中的 CXCR3 信号通过防止 EC 过度生长和促进周细胞募集,有助于促进发育过程中的血管稳定事件。