Suppr超能文献

基于反向、约化反向度和邻域度的M、NM多项式拓扑指数及其在Y型结纳米管键能中的应用

M, NM-polynomials Based on Reverse, Reduced Reverse Degree and Neighborhood Degree Based Topological Indices with Applications to Bond Energy of Y-Junction Nanotubes.

作者信息

Huilgol Medha Itagi, P H Shobha, H Jayakrishna Udupa, Cangul Ismail Naci

机构信息

Department of Mathematics, Bengaluru City University, Central College Campus, Bengaluru-560001, India.

School of Management, Presidency University, Rajanakunte, Bengaluru-560064, India.

出版信息

Comb Chem High Throughput Screen. 2024 Oct 2. doi: 10.2174/0113862073320196240917145749.

Abstract

BACKGROUND

In graph theory, M polynomials like the matching polynomial are very crucial in examining the matching structures within graphs, while NM polynomials extends this to analyze non-matching edges. These polynomials are important in many fields, including chemistry and network architecture. They support the derivation of topological indices for protein structure analysis, network communication optimization, and drug design in QSAR/QSPR investigations.

OBJECTIVE

The aim of this paper is to define novel M and NM polynomials for different topological indices and to derive their closed-form expressions, specifically for Y-junction nanotubes. These new polynomials and indices are employed to create a robust QSPR model to predict bond energy in Y-junction nanotubes, that provide high accuracy and reliability in the model's statistical performance.

METHOD

This paper introduces new forms of M and NM polynomials tailored to specific topological indices related to reverse and neighborhood reverse properties. We derive closed-form expressions for these indices in Y-junction nanotubes. Furthermore, we develop a QSPR model to predict bond energy in Y-junction nanotubes using the newly defined indices.

RESULT

We define novel M and NM polynomials for various topological indices and derive precise expressions for Y-junction nanotubes. Utilizing these indices, we construct a highly accurate QSPR model (R² = 0.999) for predicting bond energy in Y-junction nanotubes, confirming the validity of our polynomial definitions and indices.

CONCLUSION

We have presented new M and NM polynomials for different topological indices and derive their expressions specifically for Y-junction nanotubes. With these newly defined indices, we have developed a highly precise QSPR model to predict bond energy, achieving an R² value of 0.999. This work underscores the effectiveness of our polynomial definitions and indices in predicting material properties.

摘要

背景

在图论中,诸如匹配多项式之类的M多项式在研究图内的匹配结构时非常关键,而NM多项式将此扩展到分析非匹配边。这些多项式在包括化学和网络架构在内的许多领域都很重要。它们支持推导用于蛋白质结构分析、网络通信优化以及QSAR/QSPR研究中的药物设计的拓扑指数。

目的

本文的目的是为不同的拓扑指数定义新颖的M和NM多项式,并推导它们的闭式表达式,特别是针对Y型结纳米管。这些新的多项式和指数被用于创建一个强大的QSPR模型来预测Y型结纳米管中的键能,该模型在统计性能上具有高精度和可靠性。

方法

本文引入了针对与反向和邻域反向性质相关的特定拓扑指数量身定制的M和NM多项式的新形式。我们推导了Y型结纳米管中这些指数的闭式表达式。此外,我们使用新定义的指数开发了一个QSPR模型来预测Y型结纳米管中的键能。

结果

我们为各种拓扑指数定义了新颖的M和NM多项式,并推导了Y型结纳米管的精确表达式。利用这些指数,我们构建了一个用于预测Y型结纳米管中键能的高精度QSPR模型(R² = 0.999),证实了我们多项式定义和指数的有效性。

结论

我们提出了针对不同拓扑指数的新的M和NM多项式,并推导了它们针对Y型结纳米管的表达式。利用这些新定义的指数,我们开发了一个高精度的QSPR模型来预测键能,R²值达到0.999。这项工作强调了我们的多项式定义和指数在预测材料性质方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验