Suppr超能文献

碳化硅表面的温度依赖性氧化行为:反应分子动力学模拟

Temperature-Dependent Oxidation Behavior of Silicon Carbide Surface: Reactive Molecular Dynamics Simulations.

作者信息

Xie Qing, Liu Xiao, Zhou Shuguang, Zeng Lei, Dai Bo, Xu Qiang, Ge Nina

机构信息

State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.

State Key Laboratory of Aerodynamics, Mianyang 621000, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 3. doi: 10.1021/acsami.4c12392.

Abstract

The high-temperature oxidation mechanism of silicon carbide (SiC) is crucial for designing thermal protection systems in aircraft. This study explored the oxidative chemical reaction processes and mechanism on SiC surface and interfaces within the temperature range of 300-2300 K by using reactive molecular dynamics simulation. The oxygen impact on the silica (SiO) growth of the SiC surface was analyzed, which shows a progressive increase of silica thickness. The simulation results indicated that the oxidation process of SiC was a typical passive oxidation mechanism. With the environmental temperature rising and oxygen impact, the increase of oxidation thickness on the SiC surface undergoes three oxidizing reaction processes: little chemical adsorption of oxygen molecules on the initial surface, rapid oxidation of silicon and carbon, and dramatic oxidation of the interface between the oxidation layer and SiC. Additionally, this work studied the mechanism of oxidation thickness growth and chemical diffusion of oxygen. The oxidation rate is weakened according to the oxygen atom diffusion barrier effect of silica repulsion. Moreover, the kinetic parameters were statistically calculated by fitting the growth of Si-O bonds and their reaction rate constants. Subsequently, the activation energy and pre-exponential factors were derived by using the Arrhenius equation to model the chemical reaction kinetics of the thermal oxidation process. The chemical reaction behaviors of the two stages could be concluded as follows: (i) in stage I, the initial oxidation is reaction rate limiting; (ii) in stage II, SiC oxidation is limited by both the oxidation reaction rate and the oxygen diffusion coefficient of the oxidation layer. The activation energy of stage II increased compared with stage I due to the oxygen atoms diffusion barrier between the oxidation layers. This study on the oxidation and ablation mechanism of the SiC surface at the atomic scale would provide insight into understanding thermal oxidation behavior and the design of ceramic materials.

摘要

碳化硅(SiC)的高温氧化机制对于飞机热防护系统的设计至关重要。本研究通过反应分子动力学模拟,探索了300 - 2300 K温度范围内SiC表面及界面的氧化化学反应过程和机制。分析了氧气对SiC表面二氧化硅(SiO)生长的影响,结果表明二氧化硅厚度逐渐增加。模拟结果表明,SiC的氧化过程是典型的被动氧化机制。随着环境温度升高和氧气冲击,SiC表面氧化厚度的增加经历三个氧化反应过程:氧分子在初始表面的少量化学吸附、硅和碳的快速氧化以及氧化层与SiC界面的剧烈氧化。此外,本工作研究了氧化厚度增长和氧化学扩散的机制。根据二氧化硅排斥的氧原子扩散势垒效应,氧化速率减弱。此外,通过拟合Si - O键的生长及其反应速率常数,统计计算了动力学参数。随后,利用Arrhenius方程推导活化能和指前因子,以模拟热氧化过程的化学反应动力学。两个阶段的化学反应行为可总结如下:(i)在阶段I,初始氧化是反应速率限制步骤;(ii)在阶段II,SiC氧化受氧化反应速率和氧化层氧扩散系数的限制。由于氧化层之间的氧原子扩散势垒,阶段II的活化能比阶段I增加。本研究在原子尺度上对SiC表面的氧化和烧蚀机制进行研究,将有助于深入理解热氧化行为和陶瓷材料的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验