Prophet Alexander M, Polley Kritanjan, Brown Emily K, Limmer David T, Wilson Kevin R
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Department of Chemistry, University of California, Berkeley, California 94720, United States.
J Phys Chem A. 2024 Oct 17;128(41):8970-8982. doi: 10.1021/acs.jpca.4c05129. Epub 2024 Oct 3.
Iodine oxidation reactions play an important role in environmental, biological, and industrial contexts. The multiphase reaction between aqueous iodide and ozone is of particular interest due to its prevalence in the marine atmosphere and unique reactivity at the air-water interface. Here, we explore the concentration dependence of the I + O reaction in levitated microdroplets under both acidic and basic conditions. To interpret the experimental kinetics, molecular simulations are used to benchmark a kinetic model, which enables insight into the reactivity of the interface, the nanometer-scale subsurface region, and the bulk interior of the droplet. For all experiments, a kinetic description of gas- and liquid-phase diffusion is critical to interpreting the results. We find that the surface dominates the iodide oxidation kinetics under concentrated and acidic conditions, with the reactive uptake coefficient approaching an upper limit of 10 at pH 3. In contrast, reactions in the subsurface dominate under more dilute and alkaline conditions, with inhibition of the surface reaction at pH 12 and an uptake coefficient that is 10× smaller. The origin of a changing surface mechanism with pH is explored and compared to previous ozone-dependent measurements.
碘氧化反应在环境、生物和工业领域中发挥着重要作用。由于碘化物与臭氧在海洋大气中的普遍存在以及在气-水界面的独特反应性,碘化物与臭氧之间的多相反应尤其受到关注。在此,我们研究了在酸性和碱性条件下悬浮微滴中I + O反应的浓度依赖性。为了解释实验动力学,我们使用分子模拟对动力学模型进行基准测试,这有助于深入了解界面、纳米级次表面区域和液滴主体内部的反应活性。对于所有实验,气相和液相扩散的动力学描述对于解释结果至关重要。我们发现,在浓缩和酸性条件下,表面主导碘化物氧化动力学,在pH 3时反应吸收系数接近上限10。相比之下,在更稀和碱性条件下,次表面反应占主导,在pH 12时表面反应受到抑制,吸收系数小10倍。我们探讨了随pH变化的表面机制的起源,并与之前依赖臭氧的测量结果进行了比较。