Li Meng, Yang Shu, Rathi Meenal, Kumar Satish, Dutcher Cari S, Grassian Vicki H
Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
Department of Mechanical Engineering, University of Minnesota Minneapolis MN 55455 USA
Chem Sci. 2024 Jul 18;15(33):13429-13441. doi: 10.1039/d4sc03014a. eCollection 2024 Aug 22.
Although aqueous microdroplets have been shown to exhibit enhanced chemical reactivity compared to bulk solutions, mechanisms for these enhancements are not completely understood. Here we combine experimental measurements and kinetic modeling to show the strong coupling of interfacial reactions and gas/droplet partitioning in the condensation reaction of pyruvic acid (PA) to yield zymonic acid (ZA) in acidic aqueous microdroplets. Experimental analysis of single microdroplets reveals the substantial influence of evaporation of PA and partitioning of water on the size-, relative humidity (RH)- and temperature-dependent sigmoidal reaction kinetics for the condensation reaction. A newly developed diffusion-reaction-partitioning model is used to simulate the complex kinetics observed in the microdroplets. The model can quantitatively predict the size and compositional changes as the reaction proceeds under different environmental conditions, and provides insights into how microdroplet reactivity is controlled by coupled interfacial reactions and the gas-phase partitioning of PA and water. Importantly, the kinetic model best fits the data when an autocatalytic step is included in the mechanism, a reaction step where the product, ZA, catalyzes the interfacial condensation reaction. Overall, the dynamic nature of aqueous microdroplet chemistry and the coupling of interfacial chemistry with gas-phase partitioning are demonstrated. Furthermore, autocatalysis of small organic molecules at the air-water interface for aqueous microdroplets, shown here for the first time, has implications for several fields including prebiotic chemistry, atmospheric chemistry and chemical synthesis.
尽管已证明与本体溶液相比,水性微滴表现出更高的化学反应活性,但对于这些增强作用的机制尚未完全理解。在此,我们结合实验测量和动力学建模,以表明在丙酮酸(PA)于酸性水性微滴中缩合生成焦黏酸(ZA)的反应中,界面反应与气体/微滴分配之间的强耦合。对单个微滴的实验分析揭示了PA的蒸发和水的分配对缩合反应的大小、相对湿度(RH)和温度依赖性S形反应动力学的重大影响。一个新开发的扩散-反应-分配模型用于模拟在微滴中观察到的复杂动力学。该模型可以定量预测在不同环境条件下反应进行时微滴的大小和组成变化,并深入了解微滴反应活性是如何由界面反应与PA和水的气相分配的耦合所控制的。重要的是,当机理中包含自催化步骤时,动力学模型与数据拟合最佳,自催化步骤是产物ZA催化界面缩合反应的反应步骤。总体而言,展示了水性微滴化学的动态性质以及界面化学与气相分配的耦合。此外,本文首次展示了空气-水界面处小有机分子对水性微滴的自催化作用,这对包括前生物化学、大气化学和化学合成在内的多个领域都有影响。