DL E&C, Civil Business Division, Donuimun, D Tower, 134 Tongil-Ro, Jongno-Gu, Seoul, Korea.
Department of Civil and Environmental Engineering, Hongik University, Mapo-Gu, Seoul, Korea.
Environ Sci Pollut Res Int. 2024 Oct;31(49):59642-59655. doi: 10.1007/s11356-024-35173-x. Epub 2024 Oct 3.
Lake surface-water temperature (LSWT) regulates physical and biochemical processes in lakes. Therefore, understanding the LSWT dynamics is important, especially in Arctic zone since the region is experiencing a warming rate that is greater than the Earth's average. However, regular measurements of LSWT in the remote Arctic lakes always face difficulties or cannot be done by satellites accurately due to the cloud cover and their limited spatiotemporal resolution. Here, we used a historically rich data (1960-2023) to develop four machine learning-based algorithms for the daily LSWT modeling in Lake Inari, situated in Arctic zone, using the air-temperature data. Our results showed that both air-temperature (0.030 °C/yr) and LSWT (0.023m °C/yr) were warming with a rate faster than those in the globe. The long-short-term memory model, with the coefficients of determination varied from 0.96 to 0.98, outperformed other algorithms in modeling of the daily LSWT dynamics in Lake Inari, followed by both support vector regression and neural network tools, and random forest model. As the air-temperature data are widely accessible through synoptic stations and remote sensing techniques, our suggested models can be simply adopted for other Arctic lakes, where the local water-temperature data are often lacking or contain large windows of missing data due to harsh atmospheric conditions and equipment failure.
湖泊表面水温(LSWT)调节着湖泊中的物理和生化过程。因此,了解 LSWT 动态非常重要,特别是在北极地区,因为该地区的升温速度高于地球的平均水平。然而,由于云层覆盖和有限的时空分辨率,在偏远的北极湖泊中进行常规的 LSWT 测量总是存在困难,或者无法通过卫星准确测量。在这里,我们使用了丰富的历史数据(1960-2023 年),利用空气温度数据,为位于北极地区的伊纳里湖开发了四种基于机器学习的算法,用于每日 LSWT 建模。我们的结果表明,空气温度(0.030°C/yr)和 LSWT(0.023m°C/yr)都在变暖,其升温速度比全球速度更快。长短期记忆模型的决定系数从 0.96 到 0.98 不等,在伊纳里湖的每日 LSWT 动态建模中表现优于其他算法,其次是支持向量回归和神经网络工具,以及随机森林模型。由于空气温度数据可以通过气象站和遥感技术广泛获取,因此我们建议的模型可以简单地应用于其他北极湖泊,在这些湖泊中,由于恶劣的大气条件和设备故障,本地水温数据通常缺乏或存在大量缺失数据的窗口。