Islam Arephin, Huang Erwei, Tian Yi, Ramírez Pedro J, Prabhakar Reddy Kasala, Lim Hojoon, White Nathaniel, Hunt Adrian, Waluyo Iradwikanari, Liu Ping, Rodriguez José A
Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States.
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.
ACS Nano. 2024 Oct 15;18(41):28371-28381. doi: 10.1021/acsnano.4c10811. Epub 2024 Oct 3.
The efficient conversion of methane into valuable hydrocarbons, such as ethane and ethylene, at relatively low temperatures without deactivation issues is crucial for advancing sustainable energy solutions. Herein, AP-XPS and STM studies show that MgO nanostructures (0.2-0.5 nm wide, 0.4-0.6 Å high) embedded in a CuO/Cu(111) substrate activate methane at room temperature, mainly dissociating it into CH ( = 2 or 3) and H adatoms, with minimal conversion to C adatoms. These MgO nanostructures in contact with CuO/Cu(111) enable C-C coupling into ethane and ethylene at 500 K, a significantly lower temperature than that required for bulk MgO catalysts (>700 K), with negligible carbon deposition and no deactivation. DFT calculations corroborate these experimental findings. The CH → *CH + *H reaction is a downhill process on MgO/CuO/Cu(111) surfaces. The activation of methane is facilitated by electron transfer from copper to MgO and the existence of Mg and O atoms with a low coordination number in the oxide nanostructures. The formation of O-CH and O-H bonds overcomes the energy necessary for the cleavage of a C-H bond in methane. DFT studies reveal that smaller MgO model clusters provide stronger binding and lower activation barriers for C-H dissociation in CH, while larger MgO clusters promote C-C coupling due to weaker *CH binding. All of these results emphasize the importance of size when optimizing the catalytic performance of MgO nanostructures in the selective conversion of methane.
在相对较低温度下将甲烷高效转化为有价值的碳氢化合物(如乙烷和乙烯)且不存在失活问题,对于推进可持续能源解决方案至关重要。在此,俄歇电子能谱(AP-XPS)和扫描隧道显微镜(STM)研究表明,嵌入CuO/Cu(111)衬底中的氧化镁纳米结构(宽0.2 - 0.5纳米,高0.4 - 0.6埃)在室温下就能激活甲烷,主要将其分解为CH( = 2或3)和氢原子,转化为碳原子的量极少。这些与CuO/Cu(111)接触的氧化镁纳米结构能在500 K时实现碳 - 碳偶联生成乙烷和乙烯,这一温度比块状氧化镁催化剂所需的温度(>700 K)低得多,且碳沉积可忽略不计,也不会失活。密度泛函理论(DFT)计算证实了这些实验结果。CH → *CH + H反应在MgO/CuO/Cu(111)表面是一个能量降低的过程。甲烷的活化得益于电子从铜转移到氧化镁,以及氧化物纳米结构中低配位数的镁和氧原子的存在。O - CH键和O - H键的形成克服了甲烷中C - H键断裂所需的能量。DFT研究表明,较小的氧化镁模型团簇对CH中C - H解离提供更强的结合力和更低的活化能垒,而较大的氧化镁团簇由于CH结合较弱则促进碳 - 碳偶联。所有这些结果都强调了在优化氧化镁纳米结构在甲烷选择性转化中的催化性能时尺寸的重要性。