Suppr超能文献

三磷酸腺苷抑制冷响应聚集。

Adenosine Triphosphate Inhibits Cold-Responsive Aggregation.

机构信息

Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India.

出版信息

Langmuir. 2024 Oct 15;40(41):21587-21599. doi: 10.1021/acs.langmuir.4c02534. Epub 2024 Oct 3.

Abstract

Adenosine triphosphate (ATP), ubiquitous in all living organisms, is conventionally recognized as a fundamental energy currency essential for a myriad of cellular processes. While its traditional role in energy metabolism requires only micromolar concentrations, the cellular content of ATP has been found to be significantly higher at the millimolar level. Recent studies have attempted to correlate this higher concentration of ATP with its nonenergetic role in maintaining protein homeostasis, leaving the investigation of ATP's nontrivial activities in biology an open question. Here, by coupling computer simulations and experiments, we uncover new insights into ATP's role as a cryoprotectant against cold-salt stress, highlighting the necessity for higher cellular ATP concentrations. We present direct evidence at charged silica interfaces, demonstrating ATP's ability to restore native intersurface interactions disrupted by combined cold-salt stress, thereby inhibiting cold-responsive aggregation in high-salt conditions. ATP desorbs salt cations from negatively charged surfaces through predominant interactions between ATP and the salt cations. Although the mode of ATP's action remains unchanged with temperature, the extent of interaction scales with temperature, requiring less ATP activity at lower temperatures, justifying the reason for reduction in cellular ATP content due to the cold effect, reported in previous experimental studies. The trend observed in inorganic nanostructures is recurrent and robustly transferable to charged protein interfaces. A thorough comparison of ATP's cryoprotective activity with traditionally known biological cryoprotectants (glycine and betaine) reveals ATP's greater efficiency. In retrospect, our findings highlight ATP's additional biological role in cryopreservation, expanding its potential biomedical applications by offering effective protection of cells from cryoinjuries and avoiding the significant challenges associated with the toxicity of organic cryoprotectants.

摘要

三磷酸腺苷(ATP)在所有生物体中普遍存在,通常被认为是一种基本的能量货币,对于无数细胞过程都是必不可少的。虽然其在能量代谢中的传统作用只需要微摩尔浓度,但细胞内的 ATP 含量却被发现高达毫摩尔水平。最近的研究试图将这种更高浓度的 ATP 与其在维持蛋白质平衡中的非能量作用联系起来,这使得对 ATP 在生物学中非平凡活性的研究成为一个悬而未决的问题。在这里,通过将计算机模拟和实验相结合,我们揭示了 ATP 作为抗冷盐应激保护剂的新作用机制,强调了细胞内需要更高的 ATP 浓度。我们在带电二氧化硅界面上提供了直接证据,证明了 ATP 能够恢复因冷盐应激而破坏的界面间相互作用,从而抑制高盐条件下冷响应聚集。ATP 通过与盐阳离子之间的主要相互作用从带负电荷的表面上解吸盐阳离子。尽管 ATP 的作用模式随温度保持不变,但相互作用的程度随温度而变化,这需要在较低温度下较少的 ATP 活性,这就解释了先前实验研究中由于冷效应导致细胞内 ATP 含量减少的原因。在无机纳米结构中观察到的趋势是反复出现的,并且可以强有力地转移到带电蛋白质界面上。对 ATP 的冷冻保护活性与传统生物冷冻保护剂(甘氨酸和甜菜碱)进行了全面比较,结果表明 ATP 的效率更高。回顾过去,我们的发现强调了 ATP 在冷冻保存中的额外生物学作用,通过为细胞提供有效的冷冻损伤保护,避免与有机冷冻保护剂的毒性相关的重大挑战,从而扩展了其潜在的生物医学应用。

相似文献

1
Adenosine Triphosphate Inhibits Cold-Responsive Aggregation.
Langmuir. 2024 Oct 15;40(41):21587-21599. doi: 10.1021/acs.langmuir.4c02534. Epub 2024 Oct 3.
2
Mechanistic Insights on ATP's Role as a Hydrotrope.
J Phys Chem B. 2021 Jul 22;125(28):7717-7731. doi: 10.1021/acs.jpcb.1c03964. Epub 2021 Jul 9.
3
Osmolytes as Cryoprotectants under Salt Stress.
ACS Biomater Sci Eng. 2023 Oct 9;9(10):5639-5652. doi: 10.1021/acsbiomaterials.3c00763. Epub 2023 Sep 11.
5
Common Source of Cryoprotection and Osmoprotection by Osmolytes.
J Am Chem Soc. 2019 Aug 28;141(34):13311-13314. doi: 10.1021/jacs.9b06727. Epub 2019 Aug 20.
6
Selective and stoichiometric incorporation of ATP by self-assembling amyloid fibrils.
J Mater Chem B. 2021 Oct 27;9(41):8626-8630. doi: 10.1039/d1tb01976g.
7
Toward a molecular mechanism for the interaction of ATP with alpha-synuclein.
Chem Sci. 2023 Aug 26;14(36):9933-9942. doi: 10.1039/d3sc03612j. eCollection 2023 Sep 20.
8
Regulation of Acanthamoeba castellanii alternative oxidase activity by mutual exclusion of purine nucleotides; ATP's inhibitory effect.
Biochim Biophys Acta. 2009 Apr;1787(4):264-71. doi: 10.1016/j.bbabio.2009.01.017. Epub 2009 Jan 31.
10
Magnesium ion-induced changes in the binding mode of adenylates to chloroplast coupling factor 1.
J Biochem. 1976 Nov;80(5):1177-9. doi: 10.1093/oxfordjournals.jbchem.a131374.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验