Xu Jiaqi, Zhong Mengxiao, Yan Su, Chen Xiaojie, Li Weimo, Xu Meijiao, Wang Ce, Lu Xiaofeng
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province, 130012 PR China.
J Colloid Interface Sci. 2025 Feb;679(Pt A):171-180. doi: 10.1016/j.jcis.2024.09.227. Epub 2024 Sep 28.
Hydrazine oxidation reaction (HzOR), an alternative to oxygen evolution reaction, effectively mitigates hydrazine pollution while achieving energy-efficient hydrogen production. Herein, partially oxidized Ru/Rh nanoparticles embedded in carbon nanofibers (CNFs) are fabricated as a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and HzOR. The presence of multiple components including metallic Ru and Rh and their oxides provides numerous electrochemically active sites and superior charge transfer properties, thus improving the electrocatalytic performance. Additionally, the confinement of the active components within CNFs further enhances structural stability. Consequently, the optimized electrocatalyst exhibits ultralow overpotentials of 16 mV at 10 mA cm and 176 mV to reach an industry-level current density of 1 A cm for HER, considerably outperforming the benchmark Pt/C catalyst. Furthermore, it shows an outstanding anodic HzOR activity, achieving a small potential of -0.019 V to generate 10 mAcm. A two-electrode overall hydrazine splitting (OHzS) cell prepared using the electrocatalyst operates at a compelling voltage that is 1.953 V lower than that of the overall water splitting (OWS) cell at 200 mA cm. Furthermore, the OHzS cell achieves a hydrogen production rate of 1.17 mmol h, which is 15-fold that of OWS. Additionally, RhRuO-CNFs-350 is used to construct a Zn-hydrazine battery with excellent performance. This study presents an effective system for achieving high-yielding green H production with low energy consumption while simultaneously addressing hydrazine pollution.
肼氧化反应(HzOR)作为析氧反应的替代反应,在实现高效制氢的同时有效减轻了肼污染。在此,制备了嵌入碳纳米纤维(CNF)中的部分氧化Ru/Rh纳米颗粒作为析氢反应(HER)和HzOR的双功能电催化剂。包括金属Ru和Rh及其氧化物在内的多种组分的存在提供了大量电化学活性位点和优异的电荷转移性能,从而提高了电催化性能。此外,活性组分被限制在CNF内进一步增强了结构稳定性。因此,优化后的电催化剂在10 mA cm时表现出16 mV的超低过电位,在达到1 A cm的工业级电流密度时为176 mV,大大优于基准Pt/C催化剂。此外,它还表现出出色的阳极HzOR活性,在产生10 mAcm时实现了-0.019 V的小电位。使用该电催化剂制备的两电极全肼分解(OHzS)电池在200 mA cm下的工作电压比全水分解(OWS)电池低1.953 V。此外,OHzS电池的产氢速率为1.17 mmol h,是OWS的15倍。此外,RhRuO-CNFs-350用于构建性能优异的锌-肼电池。本研究提出了一种有效的系统,可在解决肼污染的同时实现低能耗高产率的绿色制氢。