School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
J Environ Manage. 2024 Nov;370:122765. doi: 10.1016/j.jenvman.2024.122765. Epub 2024 Oct 2.
Trichloroethylene (TCE) is a prevalent organic pollutant found in soil. The oxide passivation layer on the surface of micron iron powder inhibits the release of its reducing components, leading to ineffective reduction and purification of TCE in soil. To enhance TCE degradation, a slow-release reduction material "Escherichia sp. F1-micron iron powder" was developed. A novel iron-reducing bacterium, Escherichia sp. F1, was isolated from soil contaminated with chlorinated hydrocarbons. This bacterium demonstrated a sustained iron reduction capability, achieving a reduction rate of 38.7% for Fe(Ⅲ) within 15 days. Genome sequencing revealed that strain F1 harbors 53 functional iron reduction genes and 2 dehalogenation genes. Single-factor experiments identified the optimal conditions for TCE degradation in soil using the coupling material: glucose concentration at 40 mmol/kg, soil water content at 50%, and bacterial inoculum at 1% (v:w). Under these optimal conditions, the coupled material achieved 86.86% degradation of TCE in soil within 28 days. Further analysis using X-ray photoelectron spectroscopy of micron iron powder, soil Fe(Ⅱ) concentration, and soil physicochemical properties demonstrated that the addition of strain F1 to the soil could disrupt the passivation layer of iron oxide on the surface of micron iron powder, promoting the exposure of its reactive sites and internal reducing active components. This resulted in an in situ self-actuated activation of passivated micron iron powder, leading to an improved removal rate and complete dechlorination of TCE in the soil. Soil microbial high-throughput sequencing revealed that the addition of strain F1 regulated the soil bacterial community, significantly enriching of Escherichia-Shigella species associated with iron-reducing functions. This enrichment facilitated the degradation of TCE in the soil through coupling materials. The functional material plays a crucial role in achieving green treatment and risk control of sites contaminated with chlorinated organic pollutants.
三氯乙烯(TCE)是土壤中普遍存在的有机污染物。微米铁粉表面的氧化钝化层抑制其还原成分的释放,导致土壤中 TCE 的还原和净化效果不佳。为了增强 TCE 的降解,开发了一种缓释还原材料“Escherichia sp. F1-微米铁粉”。从受氯代烃污染的土壤中分离出一种新型铁还原菌 Escherichia sp. F1。该菌表现出持续的铁还原能力,在 15 天内可将 Fe(Ⅲ)还原率达到 38.7%。基因组测序表明,菌株 F1 含有 53 个功能铁还原基因和 2 个脱卤基因。单因素实验确定了使用偶联材料在土壤中降解 TCE 的最佳条件:葡萄糖浓度为 40 mmol/kg,土壤含水量为 50%,细菌接种量为 1%(v:w)。在这些最佳条件下,偶联材料在 28 天内可使土壤中 86.86%的 TCE 降解。进一步通过 X 射线光电子能谱分析微米铁粉、土壤 Fe(Ⅱ)浓度和土壤理化性质表明,向土壤中添加 F1 菌株可以破坏微米铁粉表面氧化铁的钝化层,促进其反应位点和内部还原活性成分的暴露。这导致钝化的微米铁粉原位自触发激活,从而提高了土壤中 TCE 的去除率和完全脱氯。土壤微生物高通量测序表明,添加 F1 菌株调节了土壤细菌群落,显著富集了与铁还原功能相关的 Escherichia-Shigella 属。这种富集通过偶联材料促进了土壤中 TCE 的降解。功能材料在实现含氯有机污染物污染场地的绿色处理和风险控制方面发挥着重要作用。